Cargando…

A Python data analyst's toolkit : learn Python and Python-based libraries with applications in data analysis and statistics /

Explore the fundamentals of data analysis, and statistics with case studies using Python. This book will show you how to confidently write code in Python, and use various Python libraries and functions for analyzing any dataset. The code is presented in Jupyter notebooks that can further be adapted...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rajagopalan, Gayathri (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [New York] : Apress, [2021]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1228153503
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 201229t20212021nyua ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d TEFOD  |d OCLCO  |d YDXIT  |d OCLCF  |d EBLCP  |d VT2  |d GW5XE  |d DCT  |d RDF  |d LDP  |d ERF  |d ORE  |d K6U  |d N$T  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1228044234  |a 1235837122  |a 1237464996  |a 1238201853  |a 1238204916  |a 1238206166  |a 1240520115 
020 |a 1484263995  |q electronic book 
020 |a 9781484264003 
020 |a 1484264002 
020 |a 9781484263990  |q (electronic bk.) 
020 |z 9781484263983 
020 |z 1484263987 
024 7 |a 10.1007/978-1-4842-6399-0  |2 doi 
029 1 |a AU@  |b 000068497554 
029 1 |a AU@  |b 000070277915 
035 |a (OCoLC)1228153503  |z (OCoLC)1228044234  |z (OCoLC)1235837122  |z (OCoLC)1237464996  |z (OCoLC)1238201853  |z (OCoLC)1238204916  |z (OCoLC)1238206166  |z (OCoLC)1240520115 
037 |a 74774BB5-1C26-4387-8982-CCBF17AFC6D1  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051360  |2 bisacsh 
072 7 |a UMX  |2 thema 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Rajagopalan, Gayathri,  |e author. 
245 1 2 |a A Python data analyst's toolkit :  |b learn Python and Python-based libraries with applications in data analysis and statistics /  |c Gayathri Rajagopalan 
264 1 |a [New York] :  |b Apress,  |c [2021] 
264 4 |c ©2021 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
380 |a Electronic books  |2 lcsh 
504 |a Includes bibliographical references and index. 
505 0 |a Chapter 1: Introduction to Python -- Chapter 2: Exploring Containers, Classes & Objects, and Working with Files -- Chapter 3: Regular Expressions -- Chapter 4: Data Analysis Basics -- Chapter 5: Numpy Library -- Chapter 6: Data wrangling with Pandas -- Chapter 7: Data Visualization -- Chapter 8: Case Studies -- Chapter 9: Essentials of Statistics. 
520 |a Explore the fundamentals of data analysis, and statistics with case studies using Python. This book will show you how to confidently write code in Python, and use various Python libraries and functions for analyzing any dataset. The code is presented in Jupyter notebooks that can further be adapted and extended. This book is divided into three parts - programming with Python, data analysis and visualization, and statistics. You'll start with an introduction to Python - the syntax, functions, conditional statements, data types, and different types of containers. You'll then review more advanced concepts like regular expressions, handling of files, and solving mathematical problems with Python. The second part of the book, will cover Python libraries used for data analysis. There will be an introductory chapter covering basic concepts and terminology, and one chapter each on NumPy(the scientific computation library), Pandas (the data wrangling library) and visualization libraries like Matplotlib and Seaborn. Case studies will be included as examples to help readers understand some real-world applications of data analysis. The final chapters of book focus on statistics, elucidating important principles in statistics that are relevant to data science. These topics include probability, Bayes theorem, permutations and combinations, and hypothesis testing (ANOVA, Chi-squared test, z-test, and t-test), and how the Scipy library enables simplification of tedious calculations involved in statistics. You will: Further your programming and analytical skills with Python Solve mathematical problems in calculus, and set theory and algebra with Python Work with various libraries in Python to structure, analyze, and visualize data Tackle real-life case studies using Python Review essential statistical concepts and use the Scipy library to solve problems in statistics . 
588 0 |a online resource; title from digital title page (viewed on February 04, 2021) 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
650 0 |a Statistics  |x Data processing. 
650 6 |a Python (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 6 |a Statistique  |x Informatique. 
650 7 |a Data mining  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Statistics  |x Data processing  |2 fast 
776 0 8 |i Print version:  |a Rajagopalan, Gayathri.  |t Python data analyst's toolkit.  |d [New York] : Apress, [2021]  |z 9781484263983  |w (OCoLC)1202978829 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484263990/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 17168995 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6437722 
938 |a EBSCOhost  |b EBSC  |n 2714104 
994 |a 92  |b IZTAP