Cargando…

Beginning MLOps with MLFlow : deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure /

Integrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. This book guides you through the process of data analysis, model construction, and training. The authors begin by introducing you...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Alla, Sridhar (Autor), Adari, Suman Kalyan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley] : Apress, [2021]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1226566095
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 201212s2021 cau o 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d SFB  |d UAB  |d OCLCF  |d GW5XE  |d OCLCO  |d ERF  |d EBLCP  |d TOH  |d VT2  |d OCL  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO 
019 |a 1226594878  |a 1228650608  |a 1232853987  |a 1233141969  |a 1240537892 
020 |a 9781484265499  |q (electronic bk.) 
020 |a 1484265491  |q (electronic bk.) 
020 |a 9781484265505  |q (print) 
020 |a 1484265505 
020 |z 1484265483 
020 |z 9781484265482 
024 7 |a 10.1007/978-1-4842-6549-9  |2 doi 
029 1 |a AU@  |b 000068472379 
029 1 |a AU@  |b 000070277804 
035 |a (OCoLC)1226566095  |z (OCoLC)1226594878  |z (OCoLC)1228650608  |z (OCoLC)1232853987  |z (OCoLC)1233141969  |z (OCoLC)1240537892 
050 4 |a Q325.5 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Alla, Sridhar,  |e author. 
245 1 0 |a Beginning MLOps with MLFlow :  |b deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure /  |c Sridhar Alla, Suman Kalyan Adari. 
264 1 |a [Berkeley] :  |b Apress,  |c [2021] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
500 |a Includes index. 
505 0 |a Chapter 1: Getting Started: Data Analysis -- Chapter 2: Building Models -- Chapter 3: What Is MLOps? -- Chapter 4: Introduction to MLFlow -- Chapter 5: Deploying in AWS -- Chapter 6: Deploying in Azure -- Chapter 7: Deploying in Google -- Appendix A: a2ml. 
520 |a Integrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. This book guides you through the process of data analysis, model construction, and training. The authors begin by introducing you to basic data analysis on a credit card data set and teach you how to analyze the features and their relationships to the target variable. You will learn how to build logistic regression models in scikit-learn and PySpark, and you will go through the process of hyperparameter tuning with a validation data set. You will explore three different deployment setups of machine learning models with varying levels of automation to help you better understand MLOps. MLFlow is covered and you will explore how to integrate MLOps into your existing code, allowing you to easily track metrics, parameters, graphs, and models. You will be guided through the process of deploying and querying your models with AWS SageMaker, Google Cloud, and Microsoft Azure. And you will learn how to integrate your MLOps setups using Databricks. You will: Perform basic data analysis and construct models in scikit-learn and PySpark Train, test, and validate your models (hyperparameter tuning) Know what MLOps is and what an ideal MLOps setup looks like Easily integrate MLFlow into your existing or future projects Deploy your models and perform predictions with them on the cloud. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed February 25, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Cloud computing. 
650 0 |a Computer software. 
650 2 |a Software 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Infonuagique. 
650 6 |a Logiciels. 
650 7 |a software.  |2 aat 
650 7 |a Cloud computing  |2 fast 
650 7 |a Computer software  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Adari, Suman Kalyan,  |e author. 
776 0 8 |i Print version:  |a Alla, Sridhar.  |t Beginning MLOps with MLFlow.  |d [Berkeley] : Apress, [2021]  |z 1484265483  |z 9781484265482  |w (OCoLC)1196241701 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484265499/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6421904 
938 |a YBP Library Services  |b YANK  |n 17152396 
994 |a 92  |b IZTAP