Cargando…

Hyperparameter optimization in machine learning : make your machine learning and deep learning models more efficient /

Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods. This is a step-by-step guide to hyperparameter optimization, starting with what...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Agrawal, Tanay (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley] : Apress, [2021]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1225068951
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 201202s2021 cau o 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d TOH  |d OCLCO  |d SFB  |d DCT  |d OCLCF  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d CON 
019 |a 1225545505  |a 1237465496  |a 1238205701 
020 |a 9781484265796  |q (electronic bk.) 
020 |a 1484265793  |q (electronic bk.) 
020 |z 1484265785 
020 |z 9781484265789 
024 7 |a 10.1007/978-1-4842-6579-6  |2 doi 
029 1 |a AU@  |b 000068389354 
029 1 |a AU@  |b 000070277745 
035 |a (OCoLC)1225068951  |z (OCoLC)1225545505  |z (OCoLC)1237465496  |z (OCoLC)1238205701 
037 |b Springer 
050 4 |a Q325.5 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 bicssc 
072 7 |a UYQM  |2 thema 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Agrawal, Tanay,  |e author. 
245 1 0 |a Hyperparameter optimization in machine learning :  |b make your machine learning and deep learning models more efficient /  |c Tanay Agrawal. 
264 1 |a [Berkeley] :  |b Apress,  |c [2021] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
504 |a Includes bibliographical references and index. 
520 |a Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods. This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next youll discuss Bayesian optimization for hyperparameter search, which learns from its previous history. The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, youll focus on different aspects such as creation of search spaces and distributed optimization of these libraries. Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script. Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work. You will: Discover how changes in hyperparameters affect the models performance. Apply different hyperparameter tuning algorithms to data science problems Work with Bayesian optimization methods to create efficient machine learning and deep learning models Distribute hyperparameter optimization using a cluster of machines Approach automated machine learning using hyperparameter optimization. 
505 0 |a Chapter 1: Hyperparameters -- Chapter 2: Brute Force Hyperparameter Tuning -- Chapter 3: Distributed Hyperparameter Optimization -- Chapter 4: Sequential Model-Based Global Optimization and Its Hierarchical -- Chapter 5: Using HyperOpt -- Chapter 6: Hyperparameter Generating Condition Generative Adversarial Neural. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed February 10, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Mathematical optimization  |x Computer programs. 
650 0 |a Open source software. 
650 0 |a Computer programming. 
650 6 |a Apprentissage automatique. 
650 6 |a Logiciels libres. 
650 6 |a Programmation (Informatique) 
650 7 |a computer programming.  |2 aat 
650 7 |a Computer programming.  |2 fast  |0 (OCoLC)fst00872390 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Mathematical optimization  |x Computer programs.  |2 fast  |0 (OCoLC)fst01012100 
650 7 |a Open source software.  |2 fast  |0 (OCoLC)fst01046097 
776 0 8 |i Print version:  |a Agrawal, Tanay.  |t Hyperparameter optimization in machine learning.  |d [Berkeley] : Apress, [2021]  |z 1484265785  |z 9781484265789  |w (OCoLC)1196840823 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484265796/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6414274 
938 |a YBP Library Services  |b YANK  |n 17137942 
994 |a 92  |b IZTAP