Cargando…

Essential Statistics for Non-STEM Data Analysts Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python.

Put your data science knowledge to work with this practical guide to statistics. You'll understand the working mechanism of each method used and find out how data science algorithms function. This book will help you learn the statistical techniques required for key model building and functionin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Li, Rongpeng
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mu 4500
001 OR_on1223093446
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 201121s2020 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d UKAHL  |d EBLCP  |d UKMGB  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d YDX  |d N$T  |d TEFOD  |d OCLCO  |d OCLCQ 
015 |a GBC0I1480  |2 bnb 
016 7 |a 020014563  |2 Uk 
019 |a 1221557313  |a 1339722848  |a 1395630775 
020 |a 9781838987565 
020 |a 1838987568 
020 |z 9781838984847 (pbk.) 
029 1 |a UKMGB  |b 020014563 
029 1 |a AU@  |b 000068856775 
029 1 |a AU@  |b 000068339223 
035 |a (OCoLC)1223093446  |z (OCoLC)1221557313  |z (OCoLC)1339722848  |z (OCoLC)1395630775 
037 |a 9781838987565  |b Packt Publishing 
050 4 |a QA76.9.D343  |b L57 2020 
082 0 4 |a 519.5 
049 |a UAMI 
100 1 |a Li, Rongpeng. 
245 1 0 |a Essential Statistics for Non-STEM Data Analysts  |h [electronic resource] :  |b Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2020. 
300 |a 1 online resource (393 p.) 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Getting Started with Statistics for Data Science -- Chapter 1: Fundamentals of Data Collection, Cleaning, and Preprocessing -- Technical requirements -- Collecting data from various data sources -- Reading data directly from files -- Obtaining data from an API -- Obtaining data from scratch -- Data imputation -- Preparing the dataset for imputation -- Imputation with mean or median values -- Imputation with the mode/most frequent value -- Outlier removal 
505 8 |a Data standardization -- when and how -- Examples involving the scikit-learn preprocessing module -- Imputation -- Standardization -- Summary -- Chapter 2: Essential Statistics for Data Assessment -- Classifying numerical and categorical variables -- Distinguishing between numerical and categorical variables -- Understanding mean, median, and mode -- Mean -- Median -- Mode -- Learning about variance, standard deviation, quartiles,percentiles, and skewness -- Variance -- Standard deviation -- Quartiles -- Skewness -- Knowing how to handle categorical variables and mixed data types 
505 8 |a Frequencies and proportions -- Transforming a continuous variable to a categorical one -- Using bivariate and multivariate descriptive statistics -- Covariance -- Cross-tabulation -- Summary -- Chapter 3: Visualization with Statistical Graphs -- Basic examples with the Python Matplotlib package -- Elements of a statistical graph -- Exploring important types of plotting in Matplotlib -- Advanced visualization customization -- Customizing the geometry -- Customizing the aesthetics -- Query-oriented statistical plotting -- Example 1 -- preparing data to fit the plotting function API 
505 8 |a Example 2 -- combining analysis with plain plotting -- Presentation-ready plotting tips -- Use styling -- Font matters a lot -- Summary -- Section 2: Essentials of Statistical Analysis -- Chapter 4: Sampling and Inferential Statistics -- Understanding fundamental concepts in sampling techniques -- Performing proper sampling under different scenarios -- The dangers associated with non-probability sampling -- Probability sampling -- the safer approach -- Understanding statistics associated with sampling -- Sampling distribution of the sample mean -- Standard error of the sample mean 
505 8 |a The central limit theorem -- Summary -- Chapter 5: Common Probability Distributions -- Understanding important concepts in probability -- Events and sample space -- The probability mass function and the probability density function -- Subjective probability and empirical probability -- Understanding common discrete probability distributions -- Bernoulli distribution -- Binomial distribution -- Poisson distribution -- Understanding the common continuous probability distribution -- Uniform distribution -- Exponential distribution -- Normal distribution 
500 |a Learning about joint and conditional distribution. 
520 |a Put your data science knowledge to work with this practical guide to statistics. You'll understand the working mechanism of each method used and find out how data science algorithms function. This book will help you learn the statistical techniques required for key model building and functioning using Python. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Statistics. 
650 0 |a Python (Computer program language) 
650 6 |a Python (Langage de programmation) 
650 6 |a Statistique. 
650 7 |a statistics.  |2 aat 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Statistics  |2 fast 
776 0 8 |i Print version:  |a Li, Rongpeng  |t Essential Statistics for Non-STEM Data Analysts : Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python  |d Birmingham : Packt Publishing, Limited,c2020 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781838984847/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37877015 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6396061 
938 |a EBSCOhost  |b EBSC  |n 2680289 
938 |a YBP Library Services  |b YANK  |n 301743570 
994 |a 92  |b IZTAP