Hands-On Gradient Boosting with XGBoost and scikit-learn : Perform accessible machine learning and extreme gradient boosting with Python. /
This practical XGBoost guide will put your Python and scikit-learn knowledge to work by showing you how to build powerful, fine-tuned XGBoost models with impressive speed and accuracy. This book will help you to apply XGBoost's alternative base learners, use unique transformers for model deploy...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Packt Publishing,
2020.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Cover
- Copyright
- About PACKT
- Contributors
- Table of Contents
- Preface
- Section 1: Bagging and Boosting
- Chapter 1: Machine Learning Landscape
- Previewing XGBoost
- What is machine learning?
- Data wrangling
- Dataset 1
- Bike rentals
- Understanding the data
- Correcting null values
- Predicting regression
- Predicting bike rentals
- Saving data for future use
- Declaring predictor and target columns
- Understanding regression
- Accessing scikit-learn
- Silencing warnings
- Modeling linear regression
- XGBoost
- XGBRegressor
- Cross-validation
- Predicting classification
- What is classification?
- Dataset 2
- The census
- Data wrangling
- Logistic regression
- The XGBoost classifier
- Summary
- Chapter 2: Decision Trees in Depth
- Introducing decision trees with XGBoost
- Exploring decision trees
- First decision tree model
- Inside a decision tree
- Contrasting variance and bias
- Tuning decision tree hyperparameters
- Decision Tree regressor
- Hyperparameters in general
- Putting it all together
- Predicting heart disease
- a case study
- Heart Disease dataset
- Decision Tree classifier
- Choosing hyperparameters
- Narrowing the range
- feature_importances_
- Summary
- Chapter 3: Bagging with Random Forests
- Technical requirements
- Bagging ensembles
- Ensemble methods
- Bootstrap aggregation
- Exploring random forests
- Random forest classifiers
- Random forest regressors
- Random forest hyperparameters
- oob_score
- n_estimators
- warm_start
- bootstrap
- Verbose
- Decision Tree hyperparameters
- Pushing random forest boundaries
- case study
- Preparing the dataset
- n_estimators
- cross_val_score
- Fine-tuning hyperparameters
- Random forest drawbacks
- Summary
- Chapter 4: From Gradient Boosting to XGBoost
- Technical requirements
- From bagging to boosting
- Introducing AdaBoost
- Distinguishing gradient boosting
- How gradient boosting works
- Residuals
- Learning how to build gradient boosting models from scratch
- Building a gradient boosting model in scikit-learn
- Modifying gradient boosting hyperparameters
- learning_rate
- Base learner
- subsample
- RandomizedSearchCV
- XGBoost
- Approaching big data
- gradient boosting versus XGBoost
- Introducing the exoplanet dataset
- Preprocessing the exoplanet dataset
- Building gradient boosting classifiers
- Timing models
- Comparing speed
- Summary
- Section 2: XGBoost
- Chapter 5: XGBoost Unveiled
- Designing XGBoost
- Historical narrative
- Design features
- Analyzing XGBoost parameters
- Learning objective
- Building XGBoost models
- The Iris dataset
- The Diabetes dataset
- Finding the Higgs boson
- case study
- Physics background
- Kaggle competitions
- XGBoost and the Higgs challenge
- Data
- Scoring
- Weights
- The model
- Summary
- Chapter 6: XGBoost Hyperparameters
- Technical requirements
- Preparing data and base models