Cargando…

Machine learning in the oil and gas industry : including geosciences, reservoir engineering, and production engineering with Python /

Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of som...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Pandey, Yogendra Narayan (Autor), Rastogi, Ayush (Autor), Kainkaryam, Sribharath (Autor), Bhattacharya, Srimoyee (Autor), Saputelli, Luigi (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley, CA] : Apress, [2020]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1203926799
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 201105s2020 caua ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d YDXIT  |d OCLCO  |d EBLCP  |d UKAHL  |d TOH  |d SFB  |d OCLCF  |d DCT  |d RDF  |d GW5XE  |d ERF  |d UPM  |d N$T  |d K6U  |d OCL  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO 
019 |a 1156993058  |a 1204136493  |a 1225563421  |a 1225898363  |a 1225936361  |a 1232853119  |a 1237466010  |a 1264847984 
020 |a 9781484260944  |q (electronic bk.) 
020 |a 1484260945  |q (electronic bk.) 
020 |z 1484260937 
020 |z 9781484260937 
024 7 |a 10.1007/978-1-4842-6094-4  |2 doi 
029 1 |a AU@  |b 000068389357 
029 1 |a AU@  |b 000068653550 
029 1 |a AU@  |b 000068856709 
029 1 |a AU@  |b 000072984121 
035 |a (OCoLC)1203926799  |z (OCoLC)1156993058  |z (OCoLC)1204136493  |z (OCoLC)1225563421  |z (OCoLC)1225898363  |z (OCoLC)1225936361  |z (OCoLC)1232853119  |z (OCoLC)1237466010  |z (OCoLC)1264847984 
037 |b Springer 
050 4 |a TN871  |b .P36 2020 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 622.3380285  |2 23 
049 |a UAMI 
100 1 |a Pandey, Yogendra Narayan,  |e author. 
245 1 0 |a Machine learning in the oil and gas industry :  |b including geosciences, reservoir engineering, and production engineering with Python /  |c Yogendra Narayan Pandey, Ayush Rastogi, Sribharath Kainkaryam, Srimoyee Bhattacharya, Luigi Saputelli. 
264 1 |a [Berkeley, CA] :  |b Apress,  |c [2020] 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
520 |a Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good candidates for applying machine and deep learning approaches. The initial chapters provide a primer on the Python programming language used for implementing the algorithms; this is followed by an overview of supervised and unsupervised machine learning concepts. The authors provide industry examples using open source data sets along with practical explanations of the algorithms, without diving too deep into the theoretical aspects of the algorithms employed. Machine Learning in the Oil and Gas Industry covers problems encompassing diverse industry topics, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and production engineering. Throughout the book, the emphasis is on providing a practical approach with step-by-step explanations and code examples for implementing machine and deep learning algorithms for solving real-life problems in the oil and gas industry. What You Will Learn Understanding the end-to-end industry life cycle and flow of data in the industrial operations of the oil and gas industry Get the basic concepts of computer programming and machine and deep learning required for implementing the algorithms used Study interesting industry problems that are good candidates for being solved by machine and deep learning Discover the practical considerations and challenges for executing machine and deep learning projects in the oil and gas industry. 
505 0 |a Intro -- Table of Contents -- About the Authors -- About the Technical Reviewer -- Introduction -- Chapter 1: Toward Oil and Gas 4.0 -- Major Oil and Gas Industry Sectors -- The Upstream Industry -- Exploration and Appraisal -- Field Development Planning -- Drilling and Completion -- Production Operations -- Abandonment -- The Midstream Industry -- The Downstream Industry -- Digital Oilfields -- Upstream Industry and Machine Learning -- Geosciences -- Geophysical Modeling -- Automated Fault Interpretation -- Automated Salt Identification -- Seismic Interpolation -- Seismic Inversion 
505 8 |a Geological Modeling -- Petrophysical Modeling -- Facies Classification -- Reservoir Engineering -- Field Development Planning -- Assisted History Matching -- Production Forecasting and Reserve Estimation -- Drilling and Completion -- Automated Event Recognition and Classification -- Non-Productive Time (NPT) Minimization -- Early Kick Detection -- Stuck Pipe Prediction -- Autonomous Drilling Rigs -- Production Engineering -- Workover Opportunity Candidate Recognition -- Production Optimization -- Infill Drilling -- Optimal Completion Strategy -- Predictive Maintenance -- Industry Trends 
505 8 |a Model Interpretability -- Exploratory Data Analysis (EDA) -- Supervised Learning -- Regression -- Multiple Linear Regression -- Support Vector Regression -- Decision Tree Regression -- Random Forest Regression -- XGBoost: eXtreme Gradient Boosting -- Artificial Neural Network -- Comparison of the Regression Models -- Classification -- Multinomial Logistic Regression -- Support Vector Classifier -- Decision Tree Classifier -- Random Forest Classifier -- k-Nearest Neighbors (k-NN) -- Gaussian Naive Bayes Classification -- Linear Discriminant Analysis -- Comparison of Classification Models 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from digital title page (viewed on January 11, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Petroleum engineering  |x Data processing. 
650 0 |a Petroleum industry and trade  |x Data processing. 
650 0 |a Artificial intelligence  |x Engineering applications. 
650 0 |a Artificial intelligence  |x Geophysical applications. 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Technique du pétrole  |x Informatique. 
650 6 |a Pétrole  |x Industrie et commerce  |x Informatique. 
650 6 |a Intelligence artificielle  |x Applications en ingénierie. 
650 6 |a Intelligence artificielle  |x Applications géophysiques. 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Artificial intelligence  |x Engineering applications  |2 fast 
650 7 |a Petroleum industry and trade  |x Data processing  |2 fast 
650 7 |a Petroleum engineering  |x Data processing  |2 fast 
650 7 |a Artificial intelligence  |x Geophysical applications  |2 fast 
650 7 |a Computer programming  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Open source software  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
700 1 |a Rastogi, Ayush,  |e author. 
700 1 |a Kainkaryam, Sribharath,  |e author. 
700 1 |a Bhattacharya, Srimoyee,  |e author. 
700 1 |a Saputelli, Luigi,  |e author. 
776 0 8 |i Print version:  |z 1484260937  |z 9781484260937  |w (OCoLC)1156993058 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484260944/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37890034 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6383577 
938 |a EBSCOhost  |b EBSC  |n 2664513 
938 |a YBP Library Services  |b YANK  |n 16792094 
938 |a YBP Library Services  |b YANK  |n 301722515 
994 |a 92  |b IZTAP