Cargando…

Leveraging entity-resolution to identify customers in 3rd party data /

"Presented by Kelsey Redman, AVP, Data Science at Comerica Bank. Purchasing 3rd party data on individuals can give great insights on customers, but first we have to know which individuals from that outside data source are actually customers and which are just prospects. Without a unique identif...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Austin, Texas] : Data Science Salon, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1203113700
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 201104s2020 txu032 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1203113700 
037 |a CL0501000162  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
245 0 0 |a Leveraging entity-resolution to identify customers in 3rd party data /  |c Data Science Salon. 
264 1 |a [Austin, Texas] :  |b Data Science Salon,  |c 2020. 
300 |a 1 online resource (1 streaming video file (31 min., 2 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Kelsey Redman. 
500 |a Title from resource description page (Safari, viewed October 29, 2020). 
500 |a Place of publication from title screen. 
520 |a "Presented by Kelsey Redman, AVP, Data Science at Comerica Bank. Purchasing 3rd party data on individuals can give great insights on customers, but first we have to know which individuals from that outside data source are actually customers and which are just prospects. Without a unique identifier like SSN or Driver's License number from the 3rd party data, we have to use a combination of name, address, and demographic information to identify the matching customer. Between nicknames, misspelled names and addresses, and family members with similar names all at one address, this quickly becomes a difficult task involving heavy data cleanup and an increasingly complicated series of rules. In this presentation, we demonstrate some techniques to help resolve these entities across data sources by employing the use of supervised classification machine learning techniques to quantify and predict entity 'likeness.' We showcase some of the challenges we faced with exploring other entity resolution methods, with manually labeling a comprehensive training set, and how this approach might extend to solve other data issues."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Consumers  |x Identification. 
650 0 |a Electronic data processing. 
650 6 |a Apprentissage automatique. 
650 7 |a Consumers.  |2 fast  |0 (OCoLC)fst00876410 
650 7 |a Electronic data processing.  |2 fast  |0 (OCoLC)fst00906956 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
655 7 |a Field guides.  |2 fast  |0 (OCoLC)fst01940354 
700 1 |a Redman, Kelsey,  |e on-screen presenter. 
710 2 |a Data Science Salon,  |e publisher. 
856 4 0 |u https://learning.oreilly.com/videos/~/00000QTRG1ZGHHVG/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP