Cargando…

Hands-On Natural Language Processing with PyTorch 1.x

Become a proficient NLP data scientist by developing deep learning models for NLP and extract valuable insights from structured and unstructured data Key Features Get to grips with word embeddings, semantics, labeling, and high-level word representations using practical examples Learn modern approac...

Descripción completa

Detalles Bibliográficos
Autor principal: Dop, Thomas
Formato: Electrónico eBook
Idioma:Indeterminado
Publicado: [S.l.] : Packt Publishing, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mu 4500
001 OR_on1202565677
003 OCoLC
005 20231017213018.0
006 m d
007 cr |n|||||||||
008 201010s2020 xx o ||| 0 und d
040 |a VT2  |b eng  |c VT2  |d UAB  |d OCLCO  |d OCLCF  |d ERF  |d DST  |d OCLCO  |d OCLCQ 
019 |a 1300499860  |a 1303381572 
020 |a 9781789802740 
020 |a 1789802741 
035 |a (OCoLC)1202565677  |z (OCoLC)1300499860  |z (OCoLC)1303381572 
082 0 4 |a 006.35  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Dop, Thomas. 
245 1 0 |a Hands-On Natural Language Processing with PyTorch 1.x  |h [electronic resource] /  |c Thomas Dop. 
260 |a [S.l.] :  |b Packt Publishing,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
500 |a Title from content provider. 
520 |a Become a proficient NLP data scientist by developing deep learning models for NLP and extract valuable insights from structured and unstructured data Key Features Get to grips with word embeddings, semantics, labeling, and high-level word representations using practical examples Learn modern approaches to NLP and explore state-of-the-art NLP models using PyTorch Improve your NLP applications with innovative neural networks such as RNNs, LSTMs, and CNNs Book Description In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a crucial skill. With this book, you'll learn how to extract valuable insights from text by building deep learning models for natural language processing (NLP) tasks. Starting by understanding how to install PyTorch and using CUDA to accelerate the processing speed, you'll explore how the NLP architecture works with the help of practical examples. This PyTorch NLP book will guide you through core concepts such as word embeddings, CBOW, and tokenization in PyTorch. You'll then learn techniques for processing textual data and see how deep learning can be used for NLP tasks. The book demonstrates how to implement deep learning and neural network architectures to build models that will allow you to classify and translate text and perform sentiment analysis. Finally, you'll learn how to build advanced NLP models, such as conversational chatbots. By the end of this book, you'll not only have understood the different NLP problems that can be solved using deep learning with PyTorch, but also be able to build models to solve them. What you will learn Use NLP techniques for understanding, processing, and generating text Understand PyTorch, its applications and how it can be used to build deep linguistic models Explore the wide variety of deep learning architectures for NLP Develop the skills you need to process and represent both structured and unstructured NLP data Become well-versed with state-of-the-art technologies and exciting new developments in the NLP domain Create chatbots using attention-based neural networks Who this book is for This PyTorch book is for NLP developers, machine learning and deep learning developers, and anyone interested in building intelligent language applications using both traditional NLP approaches and deep learning architectures. If you're looking to adopt modern NLP techniques and models for your d... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Artificial intelligence. 
650 0 |a Natural language processing (Computer science) 
650 0 |a Neural networks (Computer science) 
650 0 |a Python (Computer program language) 
650 2 |a Artificial Intelligence 
650 2 |a Natural Language Processing 
650 2 |a Neural Networks, Computer 
650 6 |a Intelligence artificielle. 
650 6 |a Traitement automatique des langues naturelles. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Python (Langage de programmation) 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Natural language processing (Computer science)  |2 fast  |0 (OCoLC)fst01034365 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 |z 1-78980-274-1 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781789802740/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP