Cargando…

Data-Intensive Science

Data-intensive science has the potential to transform scientific research and quickly translate scientific progress into complete solutions, policies, and economic success. But this collaborative science is still lacking the effective access and exchange of knowledge among scientists, researchers, a...

Descripción completa

Detalles Bibliográficos
Autor principal: Critchlow, Terence
Otros Autores: Dam, Kerstin Kleese van
Formato: Electrónico eBook
Idioma:Indeterminado
Publicado: [S.l.] : Chapman and Hall/CRC, 2016.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mu 4500
001 OR_on1202562509
003 OCoLC
005 20231017213018.0
006 m d
007 cr n |||
008 201010s2016 xx o ||| 0 und d
040 |a VT2  |b eng  |c VT2  |d TOH  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781000755695 
020 |a 100075569X 
035 |a (OCoLC)1202562509 
049 |a UAMI 
100 1 |a Critchlow, Terence. 
245 1 0 |a Data-Intensive Science  |h [electronic resource] /  |c Terence Critchlow. 
260 |a [S.l.] :  |b Chapman and Hall/CRC,  |c 2016. 
300 |a 1 online resource 
500 |a Title from content provider. 
520 |a Data-intensive science has the potential to transform scientific research and quickly translate scientific progress into complete solutions, policies, and economic success. But this collaborative science is still lacking the effective access and exchange of knowledge among scientists, researchers, and policy makers across a range of disciplines. Bringing together leaders from multiple scientific disciplines, Data-Intensive Science shows how a comprehensive integration of various techniques and technological advances can effectively harness the vast amount of data being generated and significantly accelerate scientific progress to address some of the world's most challenging problems. In the book, a diverse cross-section of application, computer, and data scientists explores the impact of data-intensive science on current research and describes emerging technologies that will enable future scientific breakthroughs. The book identifies best practices used to tackle challenges facing data-intensive science as well as gaps in these approaches. It also focuses on the integration of data-intensive science into standard research practice, explaining how components in the data-intensive science environment need to work together to provide the necessary infrastructure for community-scale scientific collaborations. Organizing the material based on a high-level, data-intensive science workflow, this book provides an understanding of the scientific problems that would benefit from collaborative research, the current capabilities of data-intensive science, and the solutions to enable the next round of scientific advancements. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Science  |x Data processing. 
650 6 |a Sciences  |x Informatique. 
650 7 |a Science  |x Data processing  |2 fast 
700 1 |a Dam, Kerstin Kleese van. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781439881415/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP