Cargando…

What Is Ray?

The use of distributed programming is increasing. High availability requires multiple machines and often multiple data centers. Machine learning and AI models are run as parallel tasks on clusters to reduce training time. But distributed programming has always been hard to do--at least, until now. T...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wampler, Dean
Formato: Electrónico eBook
Idioma:Indeterminado
Publicado: [S.l.] : O'Reilly Media, Inc., 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mu 4500
001 OR_on1202554447
003 OCoLC
005 20231017213018.0
006 m d
007 cr n |||
008 201011s2020 xx o ||| 0 und d
040 |a VT2  |b eng  |c VT2  |d UAB  |d OCLCO  |d UMI  |d OCLCF  |d ERF  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1206388719 
020 |a 9781492085751 
020 |a 1492085758 
029 1 |a AU@  |b 000068856670 
035 |a (OCoLC)1202554447  |z (OCoLC)1206388719 
037 |a CL0501000167  |b Safari Books Online 
050 4 |a QA76.76.A63 
049 |a UAMI 
100 1 |a Wampler, Dean. 
245 1 0 |a What Is Ray?  |h [electronic resource] /  |c Dean Wampler. 
260 |a [S.l.] :  |b O'Reilly Media, Inc.,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from content provider. 
504 |a Includes bibliographical references. 
520 |a The use of distributed programming is increasing. High availability requires multiple machines and often multiple data centers. Machine learning and AI models are run as parallel tasks on clusters to reduce training time. But distributed programming has always been hard to do--at least, until now. This report shows you an easier way. Dean Wampler from Anyscale introduces you to Ray, an open source project that provides a concise and intuitive Python API for defining tasks that need to be distributed. Built by researchers at UC Berkeley, Ray does most of the tedious work of running workloads at massive scale. For the majority of distributed workloads, this guide shows you how Ray provides a flexible, efficient, and intuitive way to get work done. Learn how Ray builds on familiar language concepts: functions for stateless tasks and classes for stateful computing Use Ray libraries for reinforcement learning, hyperparameter tuning, distributed training of TensorFlow and PyTorch models, and model serving Work with Ray for general application development, including conventional microservices and serverless applications Get hands-on instruction using live Ray code with Dean Wampler's Meet the Expert session on O'Reilly online learning. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Application program interfaces (Computer software) 
650 0 |a Artificial intelligence. 
650 0 |a Electronic data processing  |x Distributed processing. 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 2 |a Artificial Intelligence 
650 2 |a Machine Learning 
650 6 |a Interfaces de programmation d'applications. 
650 6 |a Intelligence artificielle. 
650 6 |a Traitement réparti. 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a APIs (interfaces)  |2 aat 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Application program interfaces (Computer software)  |2 fast 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Electronic data processing  |x Distributed processing  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492085768/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP