Cargando…

Machine Learning for Algorithmic Trading - Second Edition

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Key Features Design, train, and evaluate machine learning algorithms that unde...

Descripción completa

Detalles Bibliográficos
Autor principal: Jansen, Stefan
Formato: Electrónico eBook
Idioma:Indeterminado
Publicado: [S.l.] : Packt Publishing, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mu 4500
001 OR_on1202549520
003 OCoLC
005 20231017213018.0
006 m d
007 cr n |||
008 201011s2020 xx o ||| 0 und d
040 |a VT2  |b eng  |c VT2  |d UAB  |d OCLCO  |d ERF  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781839217715 
020 |a 1839217715 
029 1 |a AU@  |b 000071521041 
035 |a (OCoLC)1202549520 
049 |a UAMI 
100 1 |a Jansen, Stefan. 
245 1 0 |a Machine Learning for Algorithmic Trading - Second Edition  |h [electronic resource] /  |c Stefan Jansen. 
260 |a [S.l.] :  |b Packt Publishing,  |c 2020. 
300 |a 1 online resource 
500 |a Title from content provider. 
520 |a Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Key Features Design, train, and evaluate machine learning algorithms that underpin automated trading strategies Create a research and strategy development process to apply predictive modeling to trading decisions Leverage NLP and deep learning to extract tradeable signals from market and alternative data Book Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learn Leverage market, fundamental, and alternative text and image data Research and evaluate alpha factors using statistics, Alphalens, and SHAP values Implement machine learning techniques to solve investment and trading problems Backtest and evaluate trading strategies based on machine learning using Zipline and Backtrader Optimize portfolio risk and performance analysis using pandas, NumPy, and pyfolio Create a pairs trading strategy based on cointegration for US equities and ETFs Train a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quot... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Finance  |x Data processing. 
650 0 |a Finance  |x Statistical methods. 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Finances  |x Informatique. 
650 6 |a Finances  |x Méthodes statistiques. 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Finance  |x Data processing  |2 fast 
650 7 |a Finance  |x Statistical methods  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781839217715/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP