Cargando…

Deep Learning for Beginners

Implementing supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine over TensorFlow. Key Features Understand the fundamental machine learning concepts useful in deep learning Learn the underlying mathematical concepts as you implement deep learning models from sc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rivas, Dr. Pablo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : Packt Publishing, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mu 4500
001 OR_on1202546835
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 201010s2020 xx o 000 0 eng d
040 |a VT2  |b eng  |c VT2  |d N$T  |d YDX  |d OCLCF  |d ERF  |d OCLCO  |d VLB  |d OCLCO  |d OCLCQ 
019 |a 1197842032 
020 |a 9781838647582  |q (electronic bk.) 
020 |a 1838647589  |q (electronic bk.) 
020 |a 9781838640859 
020 |a 1838640851 
035 |a (OCoLC)1202546835  |z (OCoLC)1197842032 
050 4 |a Q325.5  |b .R58 2020eb 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Rivas, Dr. Pablo. 
245 1 0 |a Deep Learning for Beginners  |h [electronic resource] /  |c Dr. Pablo Rivas. 
260 |a [S.l.] :  |b Packt Publishing,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from content provider. 
588 0 |a Print version record. 
520 |a Implementing supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine over TensorFlow. Key Features Understand the fundamental machine learning concepts useful in deep learning Learn the underlying mathematical concepts as you implement deep learning models from scratch Explore easy-to-understand examples and use cases that will help you build a solid foundation in DL Book Description With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and you will even build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks. What you will learn Implement RNNs and Long short-term memory for image classification and Natural Language Processing tasks Explore the role of CNNs in computer vision and signal processing Understand the ethical implications of deep learning modeling Understand the mathematical terminology associated with deep learning Code a GAN and a VAE to generate images from a learned latent space Implement visualization techniques to compare AEs and VAEs Who this book is for This book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linea... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781838640859/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 2629463 
938 |a YBP Library Services  |b YANK  |n 16978441 
994 |a 92  |b IZTAP