Cargando…

Statistical topics and stochastic models for dependent data with applications : applications in reliability, survival analysis and related fields /

This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Barbu, Vlad Stefan, Vergne, Nicolas
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hoboken : ISTE, Ltd. ; Wiley, 2020.
Colección:Mathematics and statistics series (ISTE)
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_on1202464467
003 OCoLC
005 20231017213018.0
006 m o d
007 cr un|---aucuu
008 201031s2020 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d EBLCP  |d YDX  |d DG1  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d KSU  |d OCLCQ 
066 |c (S 
019 |a 1200197319  |a 1202448668 
020 |a 9781119779421  |q (electronic bk. ;  |q oBook) 
020 |a 1119779421  |q (electronic bk. ;  |q oBook) 
020 |a 9781119779414 
020 |a 1119779413 
020 |z 1786306034 
020 |z 9781786306036 
029 1 |a AU@  |b 000068434292 
035 |a (OCoLC)1202464467  |z (OCoLC)1200197319  |z (OCoLC)1202448668 
050 4 |a QA276 
082 0 4 |a 519.5  |2 23 
049 |a UAMI 
245 0 0 |a Statistical topics and stochastic models for dependent data with applications :  |b applications in reliability, survival analysis and related fields /  |c edited by Vlad Stefan Barbu, Nicolas Vergne. 
260 |a London :  |b ISTE, Ltd. ;  |a Hoboken :  |b Wiley,  |c 2020. 
300 |a 1 online resource (281 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics and statistics 
588 0 |a Print version record. 
505 0 |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 Markov and Semi-Markov Processes -- Chapter 1 Variable Length Markov Chains, Persistent Random Walks: A Close Encounter -- 1.1. Introduction -- 1.2. VLMCs: definition of the model -- 1.3. Definition and behavior of PRWs -- 1.3.1. PRWs in dimension one -- 1.3.2. PRWs in dimension two -- 1.4. VLMC: existence of stationary probability measures -- 1.5. Where VLMC and PRW meet -- 1.5.1. Semi-Markov chains and Markov additive processes -- 1.5.2. PRWs induce semi-Markov chains 
505 8 |a 3.3.2. Two-stage model -- 3.3.3. H model -- 3.3.4. Three-stage model -- 3.3.5. N-stage model -- 3.3.6. Other extensions -- 3.4. Markov chain stock models -- 3.4.1. Hurley and Johnson model -- 3.4.2. Yao model -- 3.4.3. Markov stock model -- 3.4.4. Multivariate Markov chain stock model -- 3.5. Conclusion -- 3.6. References -- Chapter 4 Estimation of Piecewise-deterministic Trajectories in a Quantum Optics Scenario -- 4.1. Introduction -- 4.1.1. The postulates of quantum mechanics -- 4.1.2. Dynamics of open quantum Markovian systems -- 4.1.3. Stochastic wave function: quantum dynamics as PDPs 
505 8 |a 4.1.4. Estimation for PDPs -- 4.2. Problem formulation -- 4.2.1. Atom-field interaction -- 4.2.2. Piecewise-deterministic trajectories -- 4.2.3. Measures -- 4.3. Estimation procedure -- 4.3.1. Strategy -- 4.3.2. Least-square estimators -- 4.3.3. Numerical experiments -- 4.4. Physical interpretation -- 4.5. Concluding remarks -- 4.6. References -- Chapter 5 Identification of Patterns in a Semi-Markov Chain -- 5.1. Introduction -- 5.2. The prefix chain -- 5.3. The semi-Markov setting -- 5.4. The hitting time of the pattern -- 5.5. A genomic application -- 5.6. Concluding remarks -- 5.7. References 
505 8 |a Part 2 Autoregressive Processes -- Chapter 6 Time Changes and Stationarity Issues for Continuous Time Autoregressive Processes of Order -- 6.1. Introduction -- 6.2. Basics -- 6.3. Stationary AR processes -- 6.3.1. Formulas for the two first-order moments -- 6.3.2. Examples -- 6.3.3. Conditions for stationarity of CAR1(p) processes -- 6.4. Time transforms -- 6.4.1. Properties of time transforms -- 6.4.2. MS processes -- 6.5. Conclusion -- 6.6. Appendix -- 6.7. References -- Chapter 7 Sequential Estimation for Non-parametric Autoregressive Models -- 7.1. Introduction -- 7.2. Main conditions 
500 |a 7.3. Pointwise estimation with absolute error risk. 
520 |a This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Mathematical statistics. 
650 0 |a Stochastic processes. 
650 2 |a Stochastic Processes 
650 6 |a Processus stochastiques. 
650 7 |a Mathematical statistics.  |2 fast  |0 (OCoLC)fst01012127 
650 7 |a Stochastic processes.  |2 fast  |0 (OCoLC)fst01133519 
700 1 |a Barbu, Vlad Stefan. 
700 1 |a Vergne, Nicolas. 
776 0 8 |i Print version:  |a Barbu, Vlad Stefan.  |t Statistical Topics and Stochastic Models for Dependent Data with Applications : Applications in Reliability, Survival Analysis and Related Fields.  |d Newark : John Wiley & Sons, Incorporated, ©2020  |z 9781786306036 
830 0 |a Mathematics and statistics series (ISTE) 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781786306036/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
880 8 |6 505-00/(S  |a 1.5.3. Semi-Markov chain of the α-LIS in a stable VLMC -- 1.5.4. The meeting point -- 1.6. References -- Chapter 2 Bootstraps of Martingale-difference Arrays Under the Uniformly Integrable Entropy -- 2.1. Introduction and motivation -- 2.2. Some preliminaries and notation -- 2.3. Main results -- 2.4. Application for the semi-Markov kernel estimators -- 2.5. Proofs -- 2.6. References -- Chapter 3 A Review of the Dividend Discount Model: From Deterministic to Stochastic Models -- 3.1. Introduction -- 3.2. General model -- 3.3. Gordon growth model and extensions -- 3.3.1. Gordon model 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6370637 
938 |a YBP Library Services  |b YANK  |n 301624754 
994 |a 92  |b IZTAP