|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1202456840 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
201031s2020 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d UKAHL
|d UKMGB
|d OCLCO
|d YDX
|d OCLCF
|d N$T
|d EBLCP
|d VLB
|d OCLCO
|d OCLCQ
|d ZCU
|d OCLCQ
|
015 |
|
|
|a GBC0H4672
|2 bnb
|
016 |
7 |
|
|a 020001993
|2 Uk
|
019 |
|
|
|a 1202224810
|a 1202478593
|
020 |
|
|
|a 1800201931
|
020 |
|
|
|a 9781800201934
|q (electronic bk.)
|
020 |
|
|
|z 9781800203587
|q (pbk.)
|
029 |
1 |
|
|a AU@
|b 000068857326
|
029 |
1 |
|
|a AU@
|b 000069692828
|
029 |
1 |
|
|a UKMGB
|b 020001993
|
029 |
1 |
|
|a AU@
|b 000068174064
|
035 |
|
|
|a (OCoLC)1202456840
|z (OCoLC)1202224810
|z (OCoLC)1202478593
|
037 |
|
|
|a 9781800201934
|b Packt Publishing
|
050 |
|
4 |
|a TL152.8
|b .V46 2020eb
|
082 |
0 |
4 |
|a 629.046028637
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Venturi, Luca.
|
245 |
1 |
0 |
|a Hands-On Vision and Behavior for Self-Driving Cars :
|b Explore Visual Perception, Lane Detection, and Object Classification with Python 3 and OpenCV 4.
|
260 |
|
|
|a Birmingham :
|b Packt Publishing, Limited,
|c 2020.
|
300 |
|
|
|a 1 online resource (374 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This book will give you insights into the technologies that drive the autonomous car revolution. To get started, all you need is basic knowledge of computer vision and Python.
|
505 |
0 |
|
|a Cover -- Copyright -- About PACKT -- Contributors -- Table of Contents -- Preface -- Section 1: OpenCV and Sensors and Signals -- Chapter 1: OpenCV Basics and Camera Calibration -- Technical requirements -- Introduction to OpenCV and NumPy -- OpenCV and NumPy -- Image size -- Grayscale images -- RGB images -- Working with image files -- Working with video files -- Working with webcams -- Manipulating images -- Flipping an image -- Blurring an image -- Changing contrast, brightness, and gamma -- Drawing rectangles and text -- Pedestrian detection using HOG -- Sliding window
|
505 |
8 |
|
|a Using HOG with OpenCV -- Introduction to the camera -- Camera terminology -- The components of a camera -- Considerations for choosing a camera -- Strengths and weaknesses of cameras -- Camera calibration with OpenCV -- Distortion detection -- Calibration -- Summary -- Questions -- Chapter 2: Understanding and Working with Signals -- Technical requirements -- Understanding signal types -- Analog versus digital -- Serial versus parallel -- Universal Asynchronous Receive and Transmit (UART) -- Differential versus single-ended -- I2C -- SPI -- Framed-based serial protocols -- Understanding CAN
|
505 |
8 |
|
|a Ethernet and internet protocols -- Understanding UDP -- Understanding TCP -- Summary -- Questions -- Further reading -- Open source protocol tools -- Chapter 3: Lane Detection -- Technical requirements -- How to perform thresholding -- How thresholding works on different color spaces -- RGB/BGR -- HLS -- HSV -- LAB -- YCbCr -- Our choice -- Perspective correction -- Edge detection -- Interpolated threshold -- Combined threshold -- Finding the lanes using histograms -- The sliding window algorithm -- Initialization -- Coordinates of the sliding windows -- Polynomial fitting -- Enhancing a video
|
505 |
8 |
|
|a Partial histogram -- Rolling average -- Summary -- Questions -- Section 2: Improving How the Self-Driving Car Works with Deep Learning and Neural Networks -- Chapter 4: Deep Learning with Neural Networks -- Technical requirements -- Understanding machine learning and neural networks -- Neural networks -- Neurons -- Parameters -- The success of deep learning -- Learning about convolutional neural networks -- Convolutions -- Why are convolutions so great? -- Getting started with Keras and TensorFlow -- Requirements -- Detecting MNIST handwritten digits -- What did we just load?
|
505 |
8 |
|
|a Training samples and labels -- One-hot encoding -- Training and testing datasets -- Defining the model of the neural network -- LeNet -- The code -- The architecture -- Training a neural network -- CIFAR-10 -- Summary -- Questions -- Further reading -- Chapter 5: Deep Learning Workflow -- Technical requirements -- Obtaining the dataset -- Datasets in the Keras module -- Existing datasets -- Your custom dataset -- Understanding the three datasets -- Splitting the dataset -- Understanding classifiers -- Creating a real-world dataset -- Data augmentation -- The model -- Tuning convolutional layers
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Automated vehicles
|x Computer programs.
|
650 |
|
0 |
|a Computer vision.
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a OpenCV (Computer program language)
|
650 |
|
6 |
|a Véhicules autonomes
|x Logiciels.
|
650 |
|
6 |
|a Vision par ordinateur.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a OpenCV (Langage de programmation)
|
650 |
|
7 |
|a Computer vision.
|2 fast
|0 (OCoLC)fst00872687
|
650 |
|
7 |
|a OpenCV (Computer program language)
|2 fast
|0 (OCoLC)fst01938441
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|0 (OCoLC)fst01084736
|
700 |
1 |
|
|a Korda, Krishtof.
|
776 |
0 |
8 |
|i Print version:
|a Venturi, Luca.
|t Hands-On Vision and Behavior for Self-Driving Cars : Explore Visual Perception, Lane Detection, and Object Classification with Python 3 and OpenCV 4.
|d Birmingham : Packt Publishing, Limited, ©2020
|z 9781800203587
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781800203587/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37794377
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6379038
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2659431
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 301685823
|
994 |
|
|
|a 92
|b IZTAP
|