Cargando…

Data lake analytics on Microsoft Azure : a practitioner's guide to big data engineering /

Get a 360-degree view of how the journey of data analytics solutions has evolved from monolithic data stores and enterprise data warehouses to data lakes and modern data warehouses. You will learn from the authors' experience working with large-scale enterprise customer engagements. This book i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chawla, Harsh
Otros Autores: Khattar, Pankaj
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [United States] : Apress, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_on1199890733
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 201011s2020 xxu o 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d EBLCP  |d UKAHL  |d DCT  |d ERF  |d GW5XE  |d SFB  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d AUD  |d OCLCQ  |d N$T 
019 |a 1202466666  |a 1225892143  |a 1227398015  |a 1264980308 
020 |a 9781484262528  |q (electronic bk.) 
020 |a 1484262522  |q (electronic bk.) 
020 |z 1484262514 
020 |z 9781484262511 
024 7 |a 10.1007/978-1-4842-6252-8  |2 doi 
029 1 |a AU@  |b 000068144232 
029 1 |a AU@  |b 000068659453 
029 1 |a AU@  |b 000068846259 
035 |a (OCoLC)1199890733  |z (OCoLC)1202466666  |z (OCoLC)1225892143  |z (OCoLC)1227398015  |z (OCoLC)1264980308 
037 |b Springer 
050 4 |a QA76.9.B45 
072 7 |a UMP  |2 bicssc 
072 7 |a COM051380  |2 bisacsh 
072 7 |a UMP  |2 thema 
082 0 4 |a 004.165  |2 23 
049 |a UAMI 
100 1 |a Chawla, Harsh. 
245 1 0 |a Data lake analytics on Microsoft Azure :  |b a practitioner's guide to big data engineering /  |c Harsh Chawla, Pankaj Khattar. 
260 |a [United States] :  |b Apress,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
505 0 |a Chapter 1: Data Lake Analytics Concepts -- Chapter 2: Building Blocks of Data Analytics -- Chapter 3: Data Analytics on Public Cloud -- Chapter 4: Data Ingestion -- Chapter 5: Data Storage -- Chapter 6: Data Preparation and Training Part I -- Chapter 7: Data Preparation and Training Part II -- Chapter 8: Model and Serve -- Chapter 9: Summary. 
520 |a Get a 360-degree view of how the journey of data analytics solutions has evolved from monolithic data stores and enterprise data warehouses to data lakes and modern data warehouses. You will learn from the authors' experience working with large-scale enterprise customer engagements. This book includes comprehensive coverage of how: To architect data lake analytics solutions by choosing suitable technologies available on Microsoft Azure The advent of microservices applications covering ecommerce or modern solutions built on IoT and how real-time streaming data has completely disrupted this ecosystem These data analytics solutions have been transformed from solely understanding the trends from historical data to building predictions by infusing machine learning technologies into the solutions Data platform professionals who have been working on relational data stores, non-relational data stores, and big data technologies will find the content in this book useful. The book also can help you start your journey into the data engineer world as it provides an overview of advanced data analytics and touches on data science concepts and various artificial intelligence and machine learning technologies available on Microsoft Azure. You will understand the: Concepts of data lake analytics, the modern data warehouse, and advanced data analytics Architecture patterns of the modern data warehouse and advanced data analytics solutions Phases--such as Data Ingestion, Store, Prep and Train, and Model and Serve--of data analytics solutions and technology choices available on Azure under each phase In-depth coverage of real-time and batch mode data analytics solutions architecture Various managed services available on Azure such as Synapse analytics, event hubs, Stream analytics, CosmosDB, and managed Hadoop services such as Databricks and HDInsight. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Microsoft .NET Framework. 
630 0 7 |a Microsoft .NET Framework.  |2 fast  |0 (OCoLC)fst01020083 
650 0 |a Microsoft Azure (Computing platform) 
650 0 |a Big data. 
650 6 |a Données volumineuses. 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Microsoft Azure (Computing platform)  |2 fast  |0 (OCoLC)fst01940548 
700 1 |a Khattar, Pankaj. 
776 0 8 |i Print version:  |a Chawla, Harsh.  |t Data lake analytics on Microsoft Azure.  |d [United States] : Apress, 2020  |z 1484262514  |z 9781484262511  |w (OCoLC)1164492024 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484262528/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37890070 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6370241 
938 |a YBP Library Services  |b YANK  |n 301621817 
938 |a EBSCOhost  |b EBSC  |n 2647719 
994 |a 92  |b IZTAP