Cargando…

Supervised learning with Python : concepts and practical implementation using Python /

Gain a thorough understanding of supervised learning algorithms by developing use cases with Python. You will study supervised learning concepts, Python code, datasets, best practices, resolution of common issues and pitfalls, and practical knowledge of implementing algorithms for structured as well...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Verdhan, Vaibhav
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [United States] : Apress, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_on1199586381
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 201010s2020 xxu o 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d EBLCP  |d SFB  |d UKAHL  |d OCLCF  |d DCT  |d ERF  |d GW5XE  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d AUD  |d OCLCQ  |d OCLCO 
019 |a 1202469274  |a 1204151203  |a 1206409194  |a 1225893638  |a 1227399971  |a 1264975068 
020 |a 9781484261569  |q (electronic bk.) 
020 |a 1484261569  |q (electronic bk.) 
020 |z 1484261550 
020 |z 9781484261552 
024 7 |a 10.1007/978-1-4842-6156-9  |2 doi 
029 1 |a AU@  |b 000068143737 
029 1 |a AU@  |b 000068653979 
029 1 |a AU@  |b 000068846218 
035 |a (OCoLC)1199586381  |z (OCoLC)1202469274  |z (OCoLC)1204151203  |z (OCoLC)1206409194  |z (OCoLC)1225893638  |z (OCoLC)1227399971  |z (OCoLC)1264975068 
037 |b Springer 
050 4 |a Q325.5 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Verdhan, Vaibhav. 
245 1 0 |a Supervised learning with Python :  |b concepts and practical implementation using Python /  |c Vaibhav Verdhan. 
260 |a [United States] :  |b Apress,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
505 0 |a Chapter 1: Introduction to Supervised Learning -- Chapter 2: Supervised Learning for Regression Analysis -- Chapter 3: Supervised Learning for Classification Problems -- Chapter 4: Advanced Algorithms for Supervised Learning -- Chapter 5: End-to-End Model Development. 
520 |a Gain a thorough understanding of supervised learning algorithms by developing use cases with Python. You will study supervised learning concepts, Python code, datasets, best practices, resolution of common issues and pitfalls, and practical knowledge of implementing algorithms for structured as well as text and images datasets. You'll start with an introduction to machine learning, highlighting the differences between supervised, semi-supervised and unsupervised learning. In the following chapters you'll study regression and classification problems, mathematics behind them, algorithms like Linear Regression, Logistic Regression, Decision Tree, KNN, Naïve Bayes, and advanced algorithms like Random Forest, SVM, Gradient Boosting and Neural Networks. Python implementation is provided for all the algorithms. You'll conclude with an end-to-end model development process including deployment and maintenance of the model. After reading Supervised Learning with Python you'll have a broad understanding of supervised learning and its practical implementation, and be able to run the code and extend it in an innovative manner. You will: Review the fundamental building blocks and concepts of supervised learning using Python Develop supervised learning solutions for structured data as well as text and images Solve issues around overfitting, feature engineering, data cleansing, and cross-validation for building best fit models Understand the end-to-end model cycle from business problem definition to model deployment and model maintenance Avoid the common pitfalls and adhere to best practices while creating a supervised learning model using Python. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 0 |a Artificial intelligence. 
650 0 |a Computer software. 
650 2 |a Artificial Intelligence 
650 2 |a Software 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 6 |a Intelligence artificielle. 
650 6 |a Logiciels. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a software.  |2 aat 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Computer software  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Verdhan, Vaibhav.  |t Supervised learning with Python.  |d [United States] : Apress, 2020  |z 1484261550  |z 9781484261552  |w (OCoLC)1159042153 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484261569/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37890046 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6369636 
938 |a YBP Library Services  |b YANK  |n 301617061 
994 |a 92  |b IZTAP