Cargando…

Practical TensorFlow.js : deep learning in web app development /

Develop and deploy deep learning web apps using the TensorFlow.js library. TensorFlow. js is part of a bigger framework named TensorFlow, which has many tools that supplement it, such as TensorBoard, ml5js, tfjs-vis. This book will cover all these technologies and show they integrate with TensorFlow...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rivera, Juan De Dios Santos
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : APress, [2020]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1197837331
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 200925s2020 cau ob 001 0 eng d
040 |a LQU  |b eng  |e rda  |e pn  |c LQU  |d YDX  |d EBLCP  |d ERF  |d OCLCO  |d NLW  |d YDXIT  |d GW5XE  |d UKAHL  |d OCLCF  |d OCLCO  |d UKMGB  |d OCLCQ  |d OCLCO  |d COM  |d FZL  |d OCLCQ  |d OCLCO 
015 |a GBC0H8364  |2 bnb 
016 7 |a 019951621  |2 Uk 
019 |a 1197723281  |a 1197947593  |a 1202459943  |a 1203573128  |a 1351600269 
020 |a 9781484262733  |q (electronic book) 
020 |a 1484262735  |q (electronic book) 
020 |z 1484262727 
020 |z 9781484262726 
024 7 |a 10.1007/978-1-4842-6273-3  |2 doi 
024 8 |a 10.1007/978-1-4842-6 
024 8 |a 9781484262726 
024 8 |a 9781484262733 
029 1 |a AU@  |b 000068068731 
029 1 |a AU@  |b 000068073250 
029 1 |a AU@  |b 000068856585 
029 1 |a UKMGB  |b 019951621 
035 |a (OCoLC)1197837331  |z (OCoLC)1197723281  |z (OCoLC)1197947593  |z (OCoLC)1202459943  |z (OCoLC)1203573128  |z (OCoLC)1351600269 
037 |a com.springer.onix.9781484262733  |b Springer Nature 
050 4 |a Q325.5  |b .P73 2020 
082 0 4 |a 006.3  |2 23 
049 |a UAMI 
100 1 |a Rivera, Juan De Dios Santos. 
245 1 0 |a Practical TensorFlow.js :  |b deep learning in web app development /  |c Juan De Dios Santos Rivera. 
264 1 |a Berkeley, CA :  |b APress,  |c [2020] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
505 0 |a Chapter 1: Welcome to TensorFlow.js -- Chapter 2: Training Our First Models -- Chapter 3: Doing k-means with ml5.js -- Chapter 4: Recognizing Handwritten Digits with Convolutional Neural Networks -- Chapter 5: Making a Game with PoseNet, a Pose Estimator Model -- Chapter 6: Identifying Toxic Text from a Google Chrome Extension -- Chapter 7: Object Detection with a Model Trained in Google Cloud AutoML -- Chapter 8: Training an Image Classifier with Transfer Learning on Node.js -- Chapter 9: Time Series Forecasting and Text Generation with Recurrent Neural Networks -- Chapter 10: Generating Handwritten Digits with Generative Adversarial Networks -- Chapter 11: Things to Remember, What's Next for You, and Final Words -- Appendix A: Apache License 2.0. 
520 |a Develop and deploy deep learning web apps using the TensorFlow.js library. TensorFlow. js is part of a bigger framework named TensorFlow, which has many tools that supplement it, such as TensorBoard, ml5js, tfjs-vis. This book will cover all these technologies and show they integrate with TensorFlow. js to create intelligent web apps. The most common and accessible platform users interact with everyday is their web browser, making it an ideal environment to deploy AI systems. TensorFlow.js is a well-known and battle-tested library for creating browser solutions. Working in JavaScript, the so-called language of the web, directly on a browser, you can develop and serve deep learning applications. You'll work with deep learning algorithms such as feedforward neural networks, convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial network (GAN). Through hands-on examples, apply these networks in use cases related to image classification, natural language processing, object detection, dimensionality reduction, image translation, transfer learning, and time series analysis. Also, these topics are very varied in terms of the kind of data they use, their output, and the training phase. Not everything in machine learning is deep networks, there is also what some call shallow or traditional machine learning. While TensorFlow.js is not the most common place to implement these, you'll be introduce them and review the basics of machine learning through TensorFlow.js. You will: Build deep learning products suitable for web browsers Work with deep learning algorithms such as feedforward neural networks, convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial network (GAN) Develop apps using image classification, natural language processing, object detection, dimensionality reduction, image translation, transfer learning, and time series analysis. 
504 |a Includes bibliographical references and inndex. 
542 |f © Copyright 2020 Juan De Dios Santos Rivera.  |g 2020 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a TensorFlow. 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Rivera, Juan De Dios Santos.  |t Practical TensorFlow.js.  |d Berkeley, CA : APress, [2020]  |z 1484262727  |z 9781484262726  |w (OCoLC)1176319424 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484262733/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37890076 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6354361 
938 |a YBP Library Services  |b YANK  |n 16965194 
994 |a 92  |b IZTAP