Cargando…

Privacy and Algorithmic Fairness /

Presented by Manojit Nand - Senior Data Scientist at JPMorgan Chase & Co. Understanding how algorithms can reinforce societal biases has become an important topic in data science. Recent work for auditing models for fairness often requires access to potentially sensitive demographic information,...

Descripción completa

Detalles Bibliográficos
Autor principal: Salon, Data (Autor, VerfasserIn.)
Autor Corporativo: Safari, an O'Reilly Media Company (Contribuidor, MitwirkendeR.)
Formato: Video
Idioma:Inglés
Publicado: [Erscheinungsort nicht ermittelbar] : Data Science Salon, 2019
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007i 4500
001 OR_on1196890914
003 OCoLC
005 20231017213018.0
006 m o c
007 cr uuu---uuuuu
007 vz czazuu
008 200916s2019 mau030 o vleng d
040 |a GBVCP  |b ger  |e rda  |c GBVCP  |d OCLCQ 
035 |a (OCoLC)1196890914 
049 |a UAMI 
100 1 |a Salon, Data,  |e VerfasserIn.  |4 aut 
245 1 0 |a Privacy and Algorithmic Fairness /  |c Salon, Data. 
250 |a 1st edition. 
264 1 |a [Erscheinungsort nicht ermittelbar] :  |b Data Science Salon,  |c 2019 
264 2 |a Boston, MA :  |b Safari 
300 |a 1 online resource (1 video file, circa 30 min.) 
336 |a zweidimensionales bewegtes Bild  |b tdi  |2 rdacontent/ger 
337 |a Computermedien  |b c  |2 rdamedia/ger 
338 |a Online-Ressource  |b cr  |2 rdacarrier/ger 
500 |a Online resource; Title from title screen (viewed September 10, 2019). 
520 |a Presented by Manojit Nand - Senior Data Scientist at JPMorgan Chase & Co. Understanding how algorithms can reinforce societal biases has become an important topic in data science. Recent work for auditing models for fairness often requires access to potentially sensitive demographic information, placing algorithmic fairness in conflict with individual privacy. For example, gender recognition technology struggles to recognize the gender of transgender individuals. To develop more accurate models, we require information that could "out" these individuals, putting their social, psychological, and physical safety at risk. We will discuss social science perspectives on privacy and how these paradigms can be incorporated into statistical measures of anonymity. I will emphasize the importance of ensuring safety and privacy of all individuals represented in our data, even at the cost of model fairness 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
710 2 |a Safari, an O'Reilly Media Company.,  |e MitwirkendeR.  |4 ctb 
856 4 0 |u https://learning.oreilly.com/videos/~/00000G8GACLFIU4/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP