Cargando…

Computer Vision Face Recognition Quick Starter in Python /

Build Python deep learning-based face detection, recognition, emotion, gender and age classification systems About This Video Use Python to detect and recognize faces from images and real-time webcam video Become well-versed with emotion detection Get up to speed with predicting age and gender from...

Descripción completa

Detalles Bibliográficos
Autor principal: Nelson, Abhilash (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico Video
Idioma:Inglés
Publicado: Packt Publishing, 2020.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007a 4500
001 OR_on1192531856
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cnu||||||||
007 vz czazuu
008 180820s2020 xx --- vleng
040 |a AU@  |b eng  |c AU@  |d NZCPL  |d OCLCF  |d OCLCO  |d OCLCQ  |d DST 
019 |a 1232110951  |a 1300615330  |a 1303326486 
020 |z 9781800567221 
024 8 |a 9781800567221 
029 0 |a AU@  |b 000067830800 
035 |a (OCoLC)1192531856  |z (OCoLC)1232110951  |z (OCoLC)1300615330  |z (OCoLC)1303326486 
049 |a UAMI 
100 1 |a Nelson, Abhilash,  |e author. 
245 1 0 |a Computer Vision  |h [electronic resource] :  |b Face Recognition Quick Starter in Python /  |c Nelson, Abhilash. 
250 |a 1st edition. 
264 1 |b Packt Publishing,  |c 2020. 
300 |a 1 online resource (1 video file, approximately 3 hr., 51 min.) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file 
520 |a Build Python deep learning-based face detection, recognition, emotion, gender and age classification systems About This Video Use Python to detect and recognize faces from images and real-time webcam video Become well-versed with emotion detection Get up to speed with predicting age and gender from images and real-time webcam video In Detail Face detection and face recognition are the most popular aspects in computer vision. They are widely used by governments and organizations for surveillance and policing. Moreover, they also have applications in our day-to-day life such as face unlocking mobile phones. This course will help you delve into face recognition using Python without having to deal with all the complexities and mathematics associated with the deep learning process. You will start with an introduction to face detection and face recognition technology. After this, you'll get the system ready for Python coding by downloading and installing the Anaconda package and other dependencies and libraries that are required such as dlib and OpenCV. You'll then write Python code to detect faces from a given image and extract the faces as separate images. Next, you'll focus on face detection by streaming a real-time video from the webcam. The course will also guide you on how to customize the face detection program to blur the detected faces dynamically from the webcam video stream. Moving ahead, you'll go on to learn facial expression recognition and age and gender prediction using a pre-trained deep learning model. Later, you'll progress to writing Python code for face recognition, which will help identify the faces that are already detected. You'll use static images as well as live streaming video from the computer's webcam to recognize the detected faces with their names. The course then explores the concept of face distance, teaching you how to convert the face distance value to face matching percentage using simple mathematics. Finally, you'll be able to tweak the face landmark points used for face detection. You'll draw a line joining the face landmark points to visualize the points in the face which the computer used for evaluation. Taking the landmark points customization to the next level, you'll create custom face make-up for the face image. By the end of this course, you'll be well-versed with face recognition and detection and be able to apply your skills in the real world. 
538 |a Mode of access: World Wide Web. 
542 |f Packt Publishing  |g 2020 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title screen (viewed July 30, 2020) 
533 |a Electronic reproduction.  |b Boston, MA :  |c Safari.  |n Available via World Wide Web.,  |d 2020. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
655 4 |a Electronic videos. 
710 2 |a Safari, an O'Reilly Media Company. 
776 |z 1-80056-722-7 
856 4 0 |u https://learning.oreilly.com/videos/~/9781800567221/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP