Cargando…

Machine Learning & AI Demystified for TV Advertising /

Presented by Diane Yu, CTO and Cofounder at FreeWheel, Comcast As the leading provider of financial and company data, Bloomberg has access to vast amounts of data on a daily basis. There are two common challenges when working directly with raw data. One is the need to discover and extract data repre...

Descripción completa

Detalles Bibliográficos
Autor principal: Salon, Data (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico Video
Idioma:Inglés
Publicado: Data Science Salon, 2019.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007a 4500
001 OR_on1192531557
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cnu||||||||
007 vz czazuu
008 090820s2019 xx 026 vleng
040 |a AU@  |b eng  |c AU@  |d TOH  |d NZCPL  |d OCLCF  |d OCLCO  |d FZL  |d OCLCQ  |d DXU  |d OCLCQ 
019 |a 1224594837  |a 1232114973  |a 1305895451  |a 1351592974  |a 1380765934  |a 1385504500 
020 |z 00000MLFFM788W7Y 
024 8 |a 00000MLFFM788W7Y 
029 0 |a AU@  |b 000067830682 
035 |a (OCoLC)1192531557  |z (OCoLC)1224594837  |z (OCoLC)1232114973  |z (OCoLC)1305895451  |z (OCoLC)1351592974  |z (OCoLC)1380765934  |z (OCoLC)1385504500 
082 0 4 |a E VIDEO 
049 |a UAMI 
100 1 |a Salon, Data,  |e author. 
245 1 0 |a Machine Learning & AI  |h [electronic resource] :  |b Demystified for TV Advertising /  |c Salon, Data. 
250 |a 1st edition. 
264 1 |b Data Science Salon,  |c 2019. 
300 |a 1 online resource (1 video file, approximately 26 min.) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file 
520 |a Presented by Diane Yu, CTO and Cofounder at FreeWheel, Comcast As the leading provider of financial and company data, Bloomberg has access to vast amounts of data on a daily basis. There are two common challenges when working directly with raw data. One is the need to discover and extract data represented in the natural document format that is not machine-readable. Another requirement is validating and ensuring that the data is of high-quality since it is required for building models for predictions, classifications, and various analytics tasks. This talk will cover ways in which data science and machine learning can be used to address these two challenges: (1) ingesting your data by extracting what is contained in natural document format and (2) cleaning your ingested data. 
538 |a Mode of access: World Wide Web. 
542 |f Copyright © Formulatedby  |g 2019 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title screen (viewed September 10, 2019) 
533 |a Electronic reproduction.  |b Boston, MA :  |c Safari.  |n Available via World Wide Web.,  |d 2019. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
655 4 |a Electronic videos. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/videos/~/00000MLFFM788W7Y/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP