Cargando…

Hands-on time series analysis with Python : from basics to bleeding edge techniques /

This book explains the concepts of time series from traditional to bleeding-edge techniques with full-fledged examples. The book begins by covering time series fundamentals and its characteristics, the structure of time series data, pre-processing, and ways of crafting the features through data wran...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vishwas, B. V.
Otros Autores: Patel, Ashish (Data scientist)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : APress, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1191051978
003 OCoLC
005 20231017213018.0
006 m o d
007 cr nn||||mamaa
008 200826s2020 caua o 001 0 eng d
040 |a LQU  |b eng  |e rda  |e pn  |c LQU  |d YDX  |d EBLCP  |d GZM  |d GW5XE  |d OCLCF  |d NLW  |d UKAHL  |d UKMGB  |d N$T  |d OCLCO  |d MNU  |d UMI  |d OCLCO  |d OCLCQ  |d COM  |d OCLCQ  |d LUU  |d OCLCQ  |d AUD  |d OCLCQ  |d OCLCO 
015 |a GBC0G5617  |2 bnb 
016 7 |a 019904450  |2 Uk 
019 |a 1191114736  |a 1193124079  |a 1195456182  |a 1195456200  |a 1196168267  |a 1204218117  |a 1222780996 
020 |a 9781484259924  |q (electronic bk.) 
020 |a 1484259920  |q (electronic bk.) 
020 |z 1484259912 
020 |z 9781484259917 
024 8 |a 10.1007/978-1-4842-5 
029 1 |a AU@  |b 000067830198 
029 1 |a AU@  |b 000067877843 
029 1 |a UKMGB  |b 019904450 
035 |a (OCoLC)1191051978  |z (OCoLC)1191114736  |z (OCoLC)1193124079  |z (OCoLC)1195456182  |z (OCoLC)1195456200  |z (OCoLC)1196168267  |z (OCoLC)1204218117  |z (OCoLC)1222780996 
037 |a com.springer.onix.9781484259924  |b Springer Nature 
050 4 |a QA280 
082 0 4 |a 519.5/5  |2 23 
049 |a UAMI 
100 1 |a Vishwas, B. V. 
245 1 0 |a Hands-on time series analysis with Python :  |b from basics to bleeding edge techniques /  |c B V Vishwas, Ashish Patel. 
264 1 |a Berkeley, CA :  |b APress,  |c 2020. 
300 |a 1 online resource (xvii, 407 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Chapter 1: Time Series and its Characteristics -- Chapter 2: Data Wrangling and Preparation for Time Series -- Chapter 3: Smoothing Methods -- Chapter 4: Regression Extension Techniques for Time Series -- Chapter 5: Bleeding Edge Techniques -- Chapter 6: Bleeding Edge Techniques for Univariate Time Series -- Chapter 7: Bleeding Edge Techniques for Multivariate Time Series -- Chapter 8: Prophet. 
520 |a This book explains the concepts of time series from traditional to bleeding-edge techniques with full-fledged examples. The book begins by covering time series fundamentals and its characteristics, the structure of time series data, pre-processing, and ways of crafting the features through data wrangling. Next, it covers the traditional time series techniques like Smoothing methods, ARMA, ARIMA, SARIMA, SARIMAX, VAR, VARMA using trending framework like StatsModels, pmdarima. Further, Book explains the building classification models using sktime, and covers how to leverage advance deep learning-based techniques like ANN, CNN, RNN, LSTM, GRU and Autoencoder to solve time series problem using Tensorflow. It finally concludes by explaining the popular framework fbprophet for modeling time series analysis. After completion of the book, the reader will have a good understanding of working with different techniques of time series methods. All the codes presented in this notebook are available in Jupyter notebooks, which allows readers to do hands-on and enhance them in exciting ways. What You'll Learn Explains basics to advanced concepts of time series How to design, develop, train, and validate time-series methodologies What are smoothing, ARMA, ARIMA, SARIMA, SRIMAX, VAR, VARMA techniques in time series and how to optimally tune parameters to yield best results Learn how to leverage bleeding-edge techniques such as ANN, CNN, RNN, LSTM, GRU, Autoencoder to solve both Univariate and multivariate problems by using two types of data preparation methods for time series. Univariate and multivariate problem solving using fbprophet. 
500 |a Includes index. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Time-series analysis  |x Data processing. 
650 0 |a Python (Computer program language) 
650 6 |a Série chronologique  |x Informatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Programming & scripting languages: general.  |2 bicssc 
650 7 |a Computer programming  |x software development.  |2 bicssc 
650 7 |a Machine learning.  |2 bicssc 
650 7 |a Computers  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Computers  |x Programming  |x Open Source.  |2 bisacsh 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Time-series analysis  |x Data processing  |2 fast 
700 1 |a Patel, Ashish  |c (Data scientist) 
776 0 8 |i Print version:  |z 1484259912  |z 9781484259917  |w (OCoLC)1148885006 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484259924/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37848753 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6318106 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6318160 
938 |a EBSCOhost  |b EBSC  |n 2578938 
938 |a YBP Library Services  |b YANK  |n 301459002 
994 |a 92  |b IZTAP