Cargando…

97 things about ethics everyone in data science should know : collective wisdom from the experts /

Most of the high-profile cases of real or perceived unethical activity in data science aren't matters of bad intent. Rather, they occur because the ethics simply aren't thought through well enough. Being ethical takes constant diligence, and in many situations identifying the right choice...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Franks, Bill, 1968- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, California : O'Reilly, 2020.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1184057346
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 200817t20202020caua ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d AAA  |d WAU  |d OUP  |d OCLCF  |d MERER  |d AJB  |d EBLCP  |d N$T  |d ERF  |d OCL  |d OCLCO  |d IAC  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1183911046  |a 1183912908  |a 1183959956  |a 1183963953  |a 1184001570  |a 1224596595 
020 |a 9781492072638  |q (electronic bk.) 
020 |a 149207263X  |q (electronic bk.) 
020 |a 1492072613  |q (electronic bk.) 
020 |a 9781492072614  |q (electronic bk.) 
020 |z 1492072664 
020 |z 9781492072669 
029 1 |a AU@  |b 000067829938 
029 1 |a AU@  |b 000071521736 
035 |a (OCoLC)1184057346  |z (OCoLC)1183911046  |z (OCoLC)1183912908  |z (OCoLC)1183959956  |z (OCoLC)1183963953  |z (OCoLC)1184001570  |z (OCoLC)1224596595 
050 4 |a QA76.9.D343  |b N56 2020eb 
082 0 4 |a 006.3/12  |2 23 
049 |a UAMI 
245 0 0 |a 97 things about ethics everyone in data science should know :  |b collective wisdom from the experts /  |c [edited by] Bill Franks. 
246 3 0 |a Ninety-seven things about ethics everyone in data science should know 
250 |a First edition. 
264 1 |a Sebastopol, California :  |b O'Reilly,  |c 2020. 
264 4 |c ©2020 
300 |a 1 online resource (xx, 320 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a Most of the high-profile cases of real or perceived unethical activity in data science aren't matters of bad intent. Rather, they occur because the ethics simply aren't thought through well enough. Being ethical takes constant diligence, and in many situations identifying the right choice can be difficult. In this in-depth book, contributors from top companies in technology, finance, and other industries share experiences and lessons learned from collecting, managing, and analyzing data ethically. Data science professionals, managers, and tech leaders will gain a better understanding of ethics through powerful, real-world best practices. 
505 0 |a Preface -- Part I. Foundational ethical principles. Chapter 1. The truth about AI bias -- Chapter 2. Introducing ethicize, the fully AI-driven cloud-based ethics solution! -- Chapter 3. "Ethical" is not a binary concept -- Chapter 4. Cautionary ethics tales: phrenology, eugenics ... and data science? -- Chapter 5. Leadership for the future: how to approach ethical transparency -- Chapter 6. Rules and rationality -- Chapter 7. Understanding passive versus proactive ethics -- Chapter 8. Be Careful with "decisions of the heart" -- Chapter 9. Fairness in the age of algorithms -- Chapter 10. Data science ethics: what is the foundational standard? -- Chapter 11. Understand who your leaders serve. 
505 8 |a Part II. Data science and society. Chapter 12. Unbiased ≠ fair: for data science, it cannot be just about the math -- Chapter 13. Trust, data science, and Stephen Covey -- Chapter 14. Ethics must be a cornerstone of the data science curriculum -- Chapter 15. Data storytelling: the tipping point between fact and fiction -- Chapter 16. Informed consent and data literacy education are crucial to ethics -- Chapter 17. First, do no harm -- Chapter 18. Why research should be reproducible -- Chapter 19. Build multiperspective AI -- Chapter 20. Ethics as a competitive advantage -- Chapter 21. Algorithmic bias: are you a bystander or an upstander? -- Chapter 22. Data science and deliberative justice: the ethics of the voice of "the other" -- Chapter 23. Spam. Are you going to miss it? -- Chapter 24. Is it wrong to be right? -- Chapter 25. We're not yet ready for a trustmark for technology. 
505 8 |a Part III. The ethics of data. Chapter 26. How to ask for customers' data with transparency and trust -- Chapter 27. Data ethics and the lemming effect -- Chapter 28. Perceptions of personal data -- Chapter 29. Should data have rights? -- Chapter 30. Anonymizing data is really, really hard -- Chapter 31. Just because you could, should you? Ethically selecting data for analytics -- Chapter 32. Limit the viewing of customer information by use case and result sets -- Chapter 33. Rethinking the "get the data" step -- Chapter 34. How to determine what data can be used ethically -- Chapter 35. Ethics is the antidote to data breaches -- Chapter 36. Ethical issues are front and center in today's data landscape -- Chapter 37. Silos create problems, perhaps more than you think -- Chapter 38. Securing your data against breaches will help us improve health care. 
505 8 |a Part IV. Defining appropriate targets & appropriate usage. Chapter 39. Algorithms are used differently than human decision makers -- Chapter 40. Pay off your fairness debt, the shadow twin of technical debt -- Chapter 41. AI ethics -- Chapter 42. The ethical data storyteller -- Chapter 43. Imbalance of factors affecting societal use of data science -- Chapter 44. Probability -- the law that governs analytical ethics -- Chapter 45. Don't generalize until your model does -- Chapter 46. Toward value-based machine learning -- Chapter 47. The importance of building knowledge in democratized data science realms -- Chapter 48. The ethics of communicating machine learning predictions -- Chapter 49. Avoid the wrong part of the creepiness scale -- Chapter 50. Triage and artificial intelligence -- Chapter 51. Algorithmic misclassification: the (pretty) good, the bad, and the ugly -- Chapter 52. The golden rule of data science -- Chapter 53. Causality and fairness -- awareness in machine learning -- Chapter 54. Facial recognition on the street and in shopping malls. 
505 8 |a Part V. Ensuring proper transparency & monitoring. Chapter 55. Responsible design and use of AI: managing safety, risk, and transparency -- Chapter 56. Blatantly discriminatory algorithms -- Chapter 57. Ethics and figs: why data scientists cannot take shortcuts -- Chapter 58. What decisions are you making? -- Chapter 59. Ethics, trading, and artificial intelligence -- Chapter 60. The before, now, and after of ethical systems -- Chapter 61. Business realities will defeat your analytics -- Chapter 62. How can I know you're right? -- Chapter 63. A framework for managing ethics in data science: model risk management -- Chapter 64. The ethical dilemma of model interpretability -- Chapter 65. Use model-agnostic explanations for finding bias in black-box models -- Chapter 66. Automatically checking for ethics violations -- Chapter 67. Should chatbots be held to a higher ethical standard than humans? -- Chapter 68. "All models are wrong." What do we do about it? -- Chapter 69. Data transparency: what you don't know can hurt you -- Chapter 70. Toward algorithmic humility. 
505 8 |a Part VI. Policy guidelines. Chapter 71. Equally distributing ethical outcomes in a digital age -- Chapter 72. Data ethics -- three key actions for the analytics leader -- Chapter 73. Ethics: the next big wave for data science careers? -- Chapter 74. Framework for designing ethics into enterprise data -- Chapter 75. Data science does not need a code of ethics -- Chapter 76. How to innovate responsibly -- Chapter 77. Implementing AI ethics governance and control -- Chapter 78. Artificial intelligence: legal liabilities amid emerging ethics -- Chapter 79. Make accountability a priority -- Chapter 80. Ethical data science: both art and science -- Chapter 81. Algorithmic impact assessments -- Chapter 82. Ethics and reflection at the core of successful data science -- Chapter 83. Using social feedback loops to navigate ethical questions -- Chapter 84. Ethical CRISP-DM: a framework for ethical data science development -- Chapter 85. Ethics rules in applied econometrics and data science -- Chapter 86. Are ethics nothing more than constraints and guidelines for proper societal behavior? -- Chapter 87. Five core virtues for data science and artificial intelligence. 
505 8 |a Part VII. Case studies -- Chapter 88. Auto insurance: when data science and the business model intersect -- Chapter 89. To fight bias in predictive policing, justice can't be color-blind -- Chapter 90. When to say no to data -- Chapter 91. The paradox of an ethical paradox -- Chapter 92. Foundation for the inevitable laws for LAWS -- Chapter 93. A lifetime marketing analyst's perspective on consumer data privacy -- Chapter 94. 100% conversion: utopia or dystopia? -- Chapter 95. Random selection at Harvard? -- Chapter 96. To prepare or not to prepare for the storm -- Chapter 97. Ethics, AI, and the audit function in financial reporting -- Chapter 98. The gray line -- Contributors -- Index 
588 0 |a Print version record; online resource viewed January 13, 2021. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining  |x Moral and ethical aspects. 
650 0 |a Data mining  |x Social aspects. 
650 0 |a Ethics. 
650 2 |a Ethics 
650 6 |a Exploration de données (Informatique)  |x Aspect moral. 
650 6 |a Exploration de données (Informatique)  |x Aspect social. 
650 6 |a Morale. 
650 7 |a ethics (philosophy)  |2 aat 
650 7 |a Data mining  |x Social aspects.  |2 fast  |0 (OCoLC)fst01983683 
650 7 |a Ethics.  |2 fast  |0 (OCoLC)fst00915833 
700 1 |a Franks, Bill,  |d 1968-  |e author. 
776 0 8 |i Print version:  |t 97 things about ethics everyone in data science should know.  |b First edition.  |d Sebastopol, California : O'Reilly, 2020  |z 9781492072669  |w (OCoLC)1191819373 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492072652/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 2565959 
938 |a YBP Library Services  |b YANK  |n 16887948 
938 |a YBP Library Services  |b YANK  |n 16887949 
994 |a 92  |b IZTAP