Cargando…

Deep Learning with PyTorch /

Deep Learning with PyTorch teaches you to create neural networks and deep learning systems with PyTorch. This practical book quickly gets you to work building a real-world example from scratch: a tumor image classifier. Along the way, it covers best practices for the entire DL pipeline, including th...

Descripción completa

Detalles Bibliográficos
Autores principales: Antiga, Luca (Autor), Viehmann, Thomas (Autor), Stevens, Eli (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Manning Publications, 2020.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1179006054
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 190720s2020 xx o 000 0 eng
040 |a AU@  |b eng  |c AU@  |d TOH  |d OCL  |d OCLCO  |d CZL  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |z 9781617295263 
024 8 |a 9781617295263 
029 0 |a AU@  |b 000067556065 
029 1 |a AU@  |b 000073648483 
035 |a (OCoLC)1179006054 
082 0 4 |a 006.32  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Antiga, Luca,  |e author. 
245 1 0 |a Deep Learning with PyTorch /  |c Antiga, Luca. 
250 |a 1st edition. 
264 1 |b Manning Publications,  |c 2020. 
300 |a 1 online resource (520 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
520 |a Deep Learning with PyTorch teaches you to create neural networks and deep learning systems with PyTorch. This practical book quickly gets you to work building a real-world example from scratch: a tumor image classifier. Along the way, it covers best practices for the entire DL pipeline, including the PyTorch Tensor API, loading data in Python, monitoring training, and visualizing results. After covering the basics, the book will take you on a journey through larger projects. The centerpiece of the book is a neural network designed for cancer detection. You'll discover ways for training networks with limited inputs and start processing data to get some results. You'll sift through the unreliable initial results and focus on how to diagnose and fix the problems in your neural network. Finally, you'll look at ways to improve your results by training with augmented data, make improvements to the model architecture, and perform other fine tuning. 
542 |f © 2020 Manning Publications Co. All rights reserved.  |g 2020 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title page (viewed July 18, 2020) 
505 0 |a Intro -- Copyright -- dedication -- contents -- front matter -- foreword -- preface -- acknowledgments -- about this book -- Who should read this book -- How this book is organized: A roadmap -- About the code -- Hardware and software requirements -- liveBook discussion forum -- Other online resources -- about the authors -- about the cover illustration -- Part 1. Core PyTorch -- 1 Introducing deep learning and the PyTorch Library -- 1.1 The deep learning revolution -- 1.2 PyTorch for deep learning -- 1.3 Why PyTorch? -- 1.3.1 The deep learning competitive landscape -- 1.4 An overview of how PyTorch supports deep learning projects -- 1.5 Hardware and software requirements -- 1.5.1 Using Jupyter Notebooks -- 1.6 Exercises -- 1.7 Summary -- 2 Pretrained networks -- 2.1 A pretrained network that recognizes the subject of an image -- 2.1.1 Obtaining a pretrained network for image recognition -- 2.1.2 AlexNet -- 2.1.3 ResNet -- 2.1.4 Ready, set, almost run -- 2.1.5 Run! -- 2.2 A pretrained model that fakes it until it makes it -- 2.2.1 The GAN game -- 2.2.2 CycleGAN -- 2.2.3 A network that turns horses into zebras -- 2.3 A pretrained network that describes scenes -- 2.3.1 NeuralTalk2 -- 2.4 Torch Hub -- 2.5 Conclusion -- 2.6 Exercises -- 2.7 Summary -- 3 It starts with a tensor -- 3.1 The world as floating-point numbers -- 3.2 Tensors: Multidimensional arrays -- 3.2.1 From Python lists to PyTorch tensors -- 3.2.2 Constructing our first tensors -- 3.2.3 The essence of tensors -- 3.3 Indexing tensors -- 3.4 Named tensors -- 3.5 Tensor element types -- 3.5.1 Specifying the numeric type with dtype -- 3.5.2 A dtype for every occasion -- 3.5.3 Managing a tensor's dtype attribute -- 3.6 The tensor API -- 3.7 Tensors: Scenic views of storage -- 3.7.1 Indexing into storage -- 3.7.2 Modifying stored values: In-place operations. 
505 8 |a 3.8 Tensor metadata: Size, offset, and stride -- 3.8.1 Views of another tensor's storage -- 3.8.2 Transposing without copying -- 3.8.3 Transposing in higher dimensions -- 3.8.4 Contiguous tensors -- 3.9 Moving tensors to the GPU -- 3.9.1 Managing a tensor's device attribute -- 3.10 NumPy interoperability -- 3.11 Generalized tensors are tensors, too -- 3.12 Serializing tensors -- 3.12.1 Serializing to HDF5 with h5py -- 3.13 Conclusion -- 3.14 Exercises -- 3.15 Summary -- 4 Real-world data representation using tensors -- 4.1 Working with images -- 4.1.1 Adding color channels -- 4.1.2 Loading an image file -- 4.1.3 Changing the layout -- 4.1.4 Normalizing the data -- 4.2 3D images: Volumetric data -- 4.2.1 Loading a specialized format -- 4.3 Representing tabular data -- 4.3.1 Using a real-world dataset -- 4.3.2 Loading a wine data tensor -- 4.3.3 Representing scores -- 4.3.4 One-hot encoding -- 4.3.5 When to categorize -- 4.3.6 Finding thresholds -- 4.4 Working with time series -- 4.4.1 Adding a time dimension -- 4.4.2 Shaping the data by time period -- 4.4.3 Ready for training -- 4.5 Representing text -- 4.5.1 Converting text to numbers -- 4.5.2 One-hot-encoding characters -- 4.5.3 One-hot encoding whole words -- 4.5.4 Text embeddings -- 4.5.5 Text embeddings as a blueprint -- 4.6 Conclusion -- 4.7 Exercises -- 4.8 Summary -- 5 The mechanics of learning -- 5.1 A timeless lesson in modeling -- 5.2 Learning is just parameter estimation -- 5.2.1 A hot problem -- 5.2.2 Gathering some data -- 5.2.3 Visualizing the data -- 5.2.4 Choosing a linear model as a first try -- 5.3 Less loss is what we want -- 5.3.1 From problem back to PyTorch -- 5.4 Down along the gradient -- 5.4.1 Decreasing loss -- 5.4.2 Getting analytical -- 5.4.3 Iterating to fit the model -- 5.4.4 Normalizing inputs -- 5.4.5 Visualizing (again). 
505 8 |a 5.5 PyTorch's autograd: Backpropagating all things -- 5.5.1 Computing the gradient automatically -- 5.5.2 Optimizers a la carte -- 5.5.3 Training, validation, and overfitting -- 5.5.4 Autograd nits and switching it off -- 5.6 Conclusion -- 5.7 Exercise -- 5.8 Summary -- 6 Using a neural network to fit the data -- 6.1 Artificial neurons -- 6.1.1 Composing a multilayer network -- 6.1.2 Understanding the error function -- 6.1.3 All we need is activation -- 6.1.4 More activation functions -- 6.1.5 Choosing the best activation function -- 6.1.6 What learning means for a neural network -- 6.2 The PyTorch nn module -- 6.2.1 Using __call__ rather than forward -- 6.2.2 Returning to the linear model -- 6.3 Finally a neural network -- 6.3.1 Replacing the linear model -- 6.3.2 Inspecting the parameters -- 6.3.3 Comparing to the linear model -- 6.4 Conclusion -- 6.5 Exercises -- 6.6 Summary -- 7 Telling birds from airplanes: Learning from images -- 7.1 A dataset of tiny images -- 7.1.1 Downloading CIFAR-10 -- 7.1.2 The Dataset class -- 7.1.3 Dataset transforms -- 7.1.4 Normalizing data -- 7.2 Distinguishing birds from airplanes -- 7.2.1 Building the dataset -- 7.2.2 A fully connected model -- 7.2.3 Output of a classifier -- 7.2.4 Representing the output as probabilities -- 7.2.5 A loss for classifying -- 7.2.6 Training the classifier -- 7.2.7 The limits of going fully connected -- 7.3 Conclusion -- 7.4 Exercises -- 7.5 Summary -- 8 Using convolutions to generalize -- 8.1 The case for convolutions -- 8.1.1 What convolutions do -- 8.2 Convolutions in action -- 8.2.1 Padding the boundary -- 8.2.2 Detecting features with convolutions -- 8.2.3 Looking further with depth and pooling -- 8.2.4 Putting it all together for our network -- 8.3 Subclassing nn. Module -- 8.3.1 Our network as an nn. Module -- 8.3.2 How PyTorch keeps track of parameters and submodules. 
505 8 |a 8.3.3 The functional API -- 8.4 Training our convnet -- 8.4.1 Measuring accuracy -- 8.4.2 Saving and loading our model -- 8.4.3 Training on the GPU -- 8.5 Model design -- 8.5.1 Adding memory capacity: Width -- 8.5.2 Helping our model to converge and generalize: Regularization -- 8.5.3 Going deeper to learn more complex structures: Depth -- 8.5.4 Comparing the designs from this section -- 8.5.5 It's already outdated -- 8.6 Conclusion -- 8.7 Exercises -- 8.8 Summary -- Part 2. Learning from images in the real world: Early detection of lung cancer -- 9 Using PyTorch to fight cancer -- 9.1 Introduction to the use case -- 9.2 Preparing for a large-scale project -- 9.3 What is a CT scan, exactly? -- 9.4 The project: An end-to-end detector for lung cancer -- 9.4.1 Why can't we just throw data at a neural network until it works? -- 9.4.2 What is a nodule? -- 9.4.3 Our data source: The LUNA Grand Challenge -- 9.4.4 Downloading the LUNA data -- 9.5 Conclusion -- 9.6 Summary -- 10 Combining data sources into a unified dataset -- 10.1 Raw CT data files -- 10.2 Parsing LUNA's annotation data -- 10.2.1 Training and validation sets -- 10.2.2 Unifying our annotation and candidate data -- 10.3 Loading individual CT scans -- 10.3.1 Hounsfield Units -- 10.4 Locating a nodule using the patient coordinate system -- 10.4.1 The patient coordinate system -- 10.4.2 CT scan shape and voxel sizes -- 10.4.3 Converting between millimeters and voxel addresses -- 10.4.4 Extracting a nodule from a CT scan -- 10.5 A straightforward dataset implementation -- 10.5.1 Caching candidate arrays with the getCtRawCandidate function -- 10.5.2 Constructing our dataset in LunaDataset.__init__ -- 10.5.3 A training/validation split -- 10.5.4 Rendering the data -- 10.6 Conclusion -- 10.7 Exercises -- Summary -- 11 Training a classification model to detect suspected tumors. 
505 8 |a 11.1 A foundational model and training loop -- 11.2 The main entry point for our application -- 11.3 Pretraining setup and initialization -- 11.3.1 Initializing the model and optimizer -- 11.3.2 Care and feeding of data loaders -- 11.4 Our first-pass neural network design -- 11.4.1 The core convolutions -- 11.4.2 The full model -- 11.5 Training and validating the model -- 11.5.1 The computeBatchLoss function -- 11.5.2 The validation loop is similar -- 11.6 Outputting performance metrics -- 11.6.1 The logMetrics function -- 11.7 Running the training script -- 11.7.1 Needed data for training -- 11.7.2 Interlude: The enumerateWithEstimate function -- 11.8 Evaluating the model: Getting 99.7% correct means we're done, right? -- 11.9 Graphing training metrics with TensorBoard -- 11.9.1 Running TensorBoard -- 11.9.2 Adding TensorBoard support to the metrics logging function -- 11.10 Why isn't the model learning to detect nodules? -- 11.11 Conclusion -- 11.12 Exercises -- 11.13 Summary -- 12 Improving training with metrics and augmentation -- 12.1 High-level plan for improvement -- 12.2 Good dogs vs. bad guys: False positives and false negatives -- 12.3 Graphing the positives and negatives -- 12.3.1 Recall is Roxie's strength -- 12.3.2 Precision is Preston's forte -- 12.3.3 Implementing precision and recall in logMetrics -- 12.3.4 Our ultimate performance metric: The F1 score -- 12.3.5 How does our model perform with our new metrics? -- 12.4 What does an ideal dataset look like? -- 12.4.1 Making the data look less like the actual and more like the "ideal" -- 12.4.2 Contrasting training with a balanced LunaDataset to previous runs -- 12.4.3 Recognizing the symptoms of overfitting -- 12.5 Revisiting the problem of overfitting -- 12.5.1 An overfit face-to-age prediction model -- 12.6 Preventing overfitting with data augmentation. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Neural networks (Computer science) 
650 0 |a Python (Computer program language) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Python (Langage de programmation) 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Artificial intelligence  |2 fast 
700 1 |a Viehmann, Thomas,  |e author. 
700 1 |a Stevens, Eli,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781617295263/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP