|
|
|
|
LEADER |
00000cgm a2200000 i 4500 |
001 |
OR_on1177148098 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o c |
007 |
cr cna|||||||| |
007 |
vz czazuu |
008 |
200724s2019 xx 037 o vleng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d OCLCF
|d OCLCQ
|d OCLCO
|
029 |
1 |
|
|a AU@
|b 000071521861
|
035 |
|
|
|a (OCoLC)1177148098
|
037 |
|
|
|a CL0501000125
|b Safari Books Online
|
050 |
|
4 |
|a Q325.5
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Wang, Peter,
|e on-screen presenter.
|
245 |
1 |
0 |
|a Data science isn't just another job /
|c Peter Wang.
|
264 |
|
1 |
|a [Place of publication not identified] :
|b O'Reilly Media,
|c 2019.
|
300 |
|
|
|a 1 online resource (1 streaming video file (36 min., 10 sec.))
|
336 |
|
|
|a two-dimensional moving image
|b tdi
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
337 |
|
|
|a video
|b v
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
511 |
0 |
|
|a Presenter, Peter Wang.
|
500 |
|
|
|a Title from title screen (viewed July 24, 2020).
|
520 |
|
|
|a "The growing corporate excitement about machine learning and AI has led to a push to professionalize the practice of data science. Unfortunately, because enterprises tend to create technology silos, this threatens to destroy the most valuable aspect of data science itself. Peter Wang explores why data science shouldn't be seen as merely another technical job within the business and why open source is such a critical aspect of innovation in the field of data science. This session is from the 2019 O'Reilly Strata Conference in New York, NY and is sponsored by Anaconda."--Resource description page
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
611 |
2 |
0 |
|a O'Reilly Strata Data Conference
|d (2019 :
|c New York, N.Y.)
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Business enterprises
|x Data processing.
|
650 |
|
0 |
|a Open source software.
|
650 |
|
0 |
|a Electronic data processing personnel
|x Vocational guidance.
|
650 |
|
2 |
|a Artificial Intelligence
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Intelligence artificielle.
|
650 |
|
6 |
|a Entreprises
|x Informatique.
|
650 |
|
6 |
|a Logiciels libres.
|
650 |
|
6 |
|a Informatique
|x Personnel
|x Orientation professionnelle.
|
650 |
|
7 |
|a artificial intelligence.
|2 aat
|
650 |
|
7 |
|a Artificial intelligence
|2 fast
|0 (OCoLC)fst00817247
|
650 |
|
7 |
|a Business enterprises
|x Data processing
|2 fast
|0 (OCoLC)fst00842543
|
650 |
|
7 |
|a Electronic data processing personnel
|x Vocational guidance
|2 fast
|0 (OCoLC)fst00907118
|
650 |
|
7 |
|a Machine learning
|2 fast
|0 (OCoLC)fst01004795
|
650 |
|
7 |
|a Open source software
|2 fast
|0 (OCoLC)fst01046097
|
856 |
4 |
0 |
|u https://learning.oreilly.com/videos/~/0636920372219/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|