Cargando…

Working with time series : denoising and imputation frameworks to improve data density /

"Anjali Samani (CircleUp) explains two simple frameworks for evaluating a dataset's candidacy for smoothing and quantitatively determining the optimal imputation strategy and the number of consecutive missing values that can be imputed without material degradation in signal quality. To ext...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1177146658
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200724s2019 xx 040 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000071521862 
035 |a (OCoLC)1177146658 
037 |a CL0501000125  |b Safari Books Online 
050 4 |a QA280 
049 |a UAMI 
100 1 |a Samani, Anjali,  |e on-screen presenter. 
245 1 0 |a Working with time series :  |b denoising and imputation frameworks to improve data density /  |c Anjali Samani. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (39 min., 54 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Anjali Samani. 
500 |a Title from title screen (viewed July 23, 2020). 
520 |a "Anjali Samani (CircleUp) explains two simple frameworks for evaluating a dataset's candidacy for smoothing and quantitatively determining the optimal imputation strategy and the number of consecutive missing values that can be imputed without material degradation in signal quality. To extract meaningful signals from alternative data, it's necessary to apply denoising and imputation to generate clean and complete time series. There are numerous ways to smooth a noisy data series and impute missing values, each with relative strengths and weaknesses. Smoothing removes noise from the data and allows patterns and trends to be identified more easily. It can, however, make a series appear less volatile than it is and may mask the very patterns you're seeking to identify. So you have to know when you should and shouldn't smooth a series, and if it is smoothed, what type of smoothing you should apply. Similarly, missing observations in time series can be imputed in many ways. These are covered in detail in both academic and practitioner literature. What caused the missing values in the first place and how the data is going to be used in downstream applications can often inform the most appropriate strategy for imputation. However, when there are multiple options to choose from, you have to objectively choose between different strategies and identify how many consecutive missing values can be safely imputed. This session is from the 2019 O'Reilly Strata Conference in New York, NY."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
611 2 0 |a O'Reilly Strata Data Conference  |d (2019 :  |c New York, N.Y.) 
650 0 |a Time-series analysis  |x Data processing. 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence 
650 6 |a Série chronologique  |x Informatique. 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Time-series analysis  |x Data processing  |2 fast  |0 (OCoLC)fst01151192 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920372066/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP