Cargando…

Practical feature engineering /

"Feature engineering is generally the section that gets left out of machine learning books, but it's also the most important part of successful models, even in today's world of deep learning. While academic courses on machine learning focus on gradients and the latest flavor of recurr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1177145190
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200724s2019 xx 039 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCO  |d OCLCQ 
029 1 |a AU@  |b 000071521925 
035 |a (OCoLC)1177145190 
037 |a CL0501000125  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Dunning, Ted,  |e on-screen presenter. 
245 1 0 |a Practical feature engineering /  |c Ted Dunning. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (38 min., 49 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Ted Dunning. 
500 |a Title from title screen (viewed July 23, 2020). 
520 |a "Feature engineering is generally the section that gets left out of machine learning books, but it's also the most important part of successful models, even in today's world of deep learning. While academic courses on machine learning focus on gradients and the latest flavor of recurrent network, Ted Dunning (MapR) explores the techniques that practitioners in the real world are seeking out better features and figuring out how to extract value using a variety of time-honored (and occasionally exceptionally clever) heuristics. In a sense, feature engineering is the Rodney Dangerfield of machine learning, never getting any respect. It is, however, the task that will get you the most value for time spent in terms of model performance. This work is not just the work of the data scientist. Good features encode business realities as well and are the cross-product of good business sense and good data engineering. This session is from the 2019 O'Reilly Strata Conference in New York, NY."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
611 2 0 |a O'Reilly Strata Data Conference  |d (2019 :  |c New York, N.Y.) 
650 0 |a Machine learning. 
650 0 |a Computer engineering  |x Data processing. 
650 0 |a Business enterprises  |x Data processing. 
650 0 |a Information technology  |x Management. 
650 6 |a Apprentissage automatique. 
650 6 |a Entreprises  |x Informatique. 
650 6 |a Technologie de l'information  |x Gestion. 
650 7 |a Business enterprises  |x Data processing  |2 fast  |0 (OCoLC)fst00842543 
650 7 |a Computer engineering  |x Data processing  |2 fast  |0 (OCoLC)fst00872080 
650 7 |a Information technology  |x Management  |2 fast  |0 (OCoLC)fst00973112 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920371823/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP