A practical guide toward explainability and bias evaluation in AI and machine learning /
"Alejandro Saucedo (The Institute for Ethical AI & Machine Learning) doesn't reinvent the wheel; he simplifies the issue of AI explainability so it can be solved using traditional methods. He covers the high-level definitions of bias in machine learning to remove ambiguity and demystif...
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico Video |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
O'Reilly Media,
2019.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
A framework to bootstrap and scale a machine learning function /
Publicado: (2019) -
Model Performance Management with Explainable AI
por: Paka, Amit, et al.
Publicado: (2021) -
Executive briefing : usable machine learning - lessons from Stanford and beyond /
Publicado: (2019) -
Towards sustainable artificial intelligence : a framework to create value and understand risk /
por: Chetsa, Ghislain Landry Tsafack
Publicado: (2021) -
Personalization at scale : challenges and practical techniques /
Publicado: (2019)