Cargando…

A practical guide toward explainability and bias evaluation in AI and machine learning /

"Alejandro Saucedo (The Institute for Ethical AI & Machine Learning) doesn't reinvent the wheel; he simplifies the issue of AI explainability so it can be solved using traditional methods. He covers the high-level definitions of bias in machine learning to remove ambiguity and demystif...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1177144520
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200724s2019 xx 041 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000071521921 
035 |a (OCoLC)1177144520 
037 |a CL0501000125  |b Safari Books Online 
050 4 |a Q335.5 
049 |a UAMI 
100 1 |a Saucedo, Alejandro,  |e on-screen presenter. 
245 1 2 |a A practical guide toward explainability and bias evaluation in AI and machine learning /  |c Alejandro Saucedo. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (40 min., 39 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Alejandro Saucedo. 
500 |a Title from title screen (viewed July 23, 2020). 
520 |a "Alejandro Saucedo (The Institute for Ethical AI & Machine Learning) doesn't reinvent the wheel; he simplifies the issue of AI explainability so it can be solved using traditional methods. He covers the high-level definitions of bias in machine learning to remove ambiguity and demystifies it through a hands-on example, in which the objective is to automate the loan-approval process for a company using machine learning, which allows you to go through this challenge step by step and use key tools and techniques from the latest research together with domain expert knowledge at the right points to enable you to explain decisions and mitigate undesired bias in machine learning models. Alejandro breaks undesired bias down into two constituent parts: a priori societal bias and a posteriori statistical bias, with tangible examples of how undesired bias is introduced in each step, and you'll learn some very interesting research findings in this topic. Spoiler alert: Alejandro takes a pragmatic approach, showing how any nontrivial system will always have an inherent bias, so the objective is not to remove bias, but to make sure you can get as close as possible to your objectives and make sure your objectives are as close as possible to the ideal solution. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
611 2 0 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c San Jose, Calif.) 
650 0 |a Artificial intelligence  |x Moral and ethical aspects. 
650 0 |a Machine learning  |x Moral and ethical aspects. 
650 6 |a Intelligence artificielle  |x Aspect moral. 
650 6 |a Apprentissage automatique  |x Aspect moral. 
650 7 |a Artificial intelligence  |x Moral and ethical aspects  |2 fast  |0 (OCoLC)fst00817273 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920371267/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP