Cargando…

Fighting crime with graph learning /

"Despite tremendous resources dedicated to anti-money laundering (AML), only a tiny fraction of illicit activity is prevented. The research community can help. Mark Weber (MIT-IBM Watson AI Lab) explores how to map the structural and behavioral dynamics driving the technical challenge, and he r...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1177143690
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200724s2019 xx 051 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000071521927 
035 |a (OCoLC)1177143690 
037 |a CL0501000125  |b Safari Books Online 
050 4 |a QA166 
049 |a UAMI 
100 1 |a Weber, Mark,  |e on-screen presenter. 
245 1 0 |a Fighting crime with graph learning /  |c Mark Weber. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (50 min., 57 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Mark Weber. 
500 |a Title from title screen (viewed July 23, 2020). 
520 |a "Despite tremendous resources dedicated to anti-money laundering (AML), only a tiny fraction of illicit activity is prevented. The research community can help. Mark Weber (MIT-IBM Watson AI Lab) explores how to map the structural and behavioral dynamics driving the technical challenge, and he reviews AML methods both current and emergent. You'll get a first look at scalable graph convolutional neural networks for forensic analysis of financial data, which is massive, dense, and dynamic. Mark outlines preliminary experimental results using a large synthetic graph (1M nodes, 9M edges) generated by a data simulator called AMLSim, and he considers opportunities for high performance efficiency, in terms of computation and memory, and shares results from a simple graph compression experiment, all of which supports the working hypothesis that graph deep learning for AML bears great promise in the fight against criminal financial activity. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
611 2 0 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c San Jose, Calif.) 
650 0 |a Graph theory  |x Data processing. 
650 0 |a Neural networks (Computer science) 
650 0 |a Criminal statistics  |x Data processing. 
650 0 |a Money laundering investigation. 
650 2 |a Neural Networks, Computer 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Statistiques criminelles  |x Informatique. 
650 6 |a Blanchiment de l'argent  |x Enquêtes. 
650 7 |a Criminal statistics  |x Data processing  |2 fast  |0 (OCoLC)fst00883502 
650 7 |a Graph theory  |x Data processing  |2 fast  |0 (OCoLC)fst00946587 
650 7 |a Money laundering investigation  |2 fast  |0 (OCoLC)fst01025325 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920371205/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP