Cargando…

Executive briefing : usable machine learning - lessons from Stanford and beyond /

"Despite a meteoric rise in data volumes within modern enterprises, enabling nontechnical users to put this data to work in diagnostic and predictive tasks remains a fundamental challenge. Peter Bailis (Sisu | Stanford University) details the lessons learned in building new systems and interfac...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1177143004
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200724s2019 xx 049 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCO  |d OCLCQ 
019 |a 1177145510 
029 1 |a AU@  |b 000071521919 
035 |a (OCoLC)1177143004  |z (OCoLC)1177145510 
037 |a CL0501000125  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Bailis, Peter,  |e on-screen presenter. 
245 1 0 |a Executive briefing :  |b usable machine learning - lessons from Stanford and beyond /  |c Peter Bailis. 
246 3 0 |a Usable machine learning - lessons from Stanford and beyond 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (48 min., 30 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Peter Bailis. 
500 |a Title from title screen (viewed July 22, 2020). 
520 |a "Despite a meteoric rise in data volumes within modern enterprises, enabling nontechnical users to put this data to work in diagnostic and predictive tasks remains a fundamental challenge. Peter Bailis (Sisu | Stanford University) details the lessons learned in building new systems and interfaces to help users quickly and easily leverage the data at their disposal with production experience from Facebook, Microsoft, and the Stanford DAWN project. Drawing on his research and startup experience, Peter examines why deep networks aren't a panacea for most organizations' data; how usability and speed are the best path to better models; why Facebook, Apple, Amazon, Netflix, and Google (FAANG) likely won't (and can't) dominate every vertical; and why automating feature selection is more practical than AutoML. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
611 2 0 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c San Jose, Calif.) 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920371052/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920371885/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP