Cargando…

Executive briefing : an age of embeddings /

"Word embeddings first emerged as a revolutionary technique in natural language processing (NLP) in the last decade, allowing machines to read large reams of unlabeled text and automatically answer analogical questions such as, 'What is to man as queen is to woman?'" Modern embed...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1177142835
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200724s2019 xx 045 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000071521926 
035 |a (OCoLC)1177142835 
037 |a CL0501000125  |b Safari Books Online 
050 4 |a QA76.9.N38 
049 |a UAMI 
100 1 |a Kejriwal, Mayank,  |e on-screen presenter. 
245 1 0 |a Executive briefing :  |b an age of embeddings /  |c Mayank Kejriwal. 
246 3 0 |a Age of embeddings 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (44 min., 59 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Mayank Kejriwal. 
500 |a Title from title screen (viewed July 22, 2020). 
520 |a "Word embeddings first emerged as a revolutionary technique in natural language processing (NLP) in the last decade, allowing machines to read large reams of unlabeled text and automatically answer analogical questions such as, 'What is to man as queen is to woman?'" Modern embeddings leverage advances in deep neural networks to be effective. Following the success of word embeddings, there have been massive efforts in both academia and industry to embed all kinds of data, including images, speech, video, entire sentences, phrases and documents, structured data, and even computer programs. These piecemeal approaches are now starting to converge, drawing on a similar mix of techniques. Mayank Kejriwal (USC Information Sciences Institute) explores the ongoing movement that's attempting to embed every conceivable kind of data, sometimes jointly, to build ever-more powerful predictive models. Mayank makes a business case for why you should care about embeddings and how you can position them as your organization's secret sauce within a broader AI strategy. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
611 2 0 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c San Jose, Calif.) 
650 0 |a Natural language processing (Computer science) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 0 |a Embedded computer systems. 
650 2 |a Natural Language Processing 
650 2 |a Artificial Intelligence 
650 6 |a Traitement automatique des langues naturelles. 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 6 |a Systèmes enfouis (Informatique) 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Embedded computer systems  |2 fast  |0 (OCoLC)fst00908298 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Natural language processing (Computer science)  |2 fast  |0 (OCoLC)fst01034365 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920371021/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP