Cargando…

Executive briefing : explaining machine learning models /

"ML methods have been causing a revolution in several fields, including science and technology, finance, healthcare, cybersecurity, etc. For instance, ML can identify objects in images, perform language translation, enable web search, perform medical diagnosis, classify fraudulent transactions-...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1177140600
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200724s2019 xx 031 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000071521928 
035 |a (OCoLC)1177140600 
037 |a CL0501000125  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Taly, Ankur,  |e on-screen presenter. 
245 1 0 |a Executive briefing :  |b explaining machine learning models /  |c Ankur Taly. 
246 3 |a Explaining machine learning models 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (30 min., 33 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Ankur Taly. 
500 |a Title from title screen (viewed July 22, 2020). 
520 |a "ML methods have been causing a revolution in several fields, including science and technology, finance, healthcare, cybersecurity, etc. For instance, ML can identify objects in images, perform language translation, enable web search, perform medical diagnosis, classify fraudulent transactions--all with surprising accuracy. Unfortunately, much of this progress has come with ML models, especially ones based on deep neural networks, getting more complex and opaque. An overarching question that arises is why the model made its prediction. This question is of importance to developers in debugging (mis- )predictions, evaluators in assessing the robustness and fairness of the model, and end users in deciding whether they can trust the model. Ankur Taly (Fiddler) explores the problem of understanding individual predictions by attributing them to input features--a problem that's received a lot of attention in the last couple of years. Ankur details an attribution method called integrated gradients that's applicable to a variety of deep neural networks (object recognition, text categorization, machine translation, etc.) and is backed by an axiomatic justification, and he covers applications of the method to debug model predictions, increase model transparency, and assess model robustness. He also dives into a classic result from cooperative game theory called the Shapley values, which has recently been extensively applied to explaining predictions made by nondifferentiable models such as decision trees, random forests, gradient-boosted trees, etc. Time permitting, you'll get a sneak peak of the Fiddler platform and how it incorporates several of these techniques to demystify models. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
611 2 0 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c San Jose, Calif.) 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 0 |a Game theory. 
650 2 |a Artificial Intelligence 
650 2 |a Game Theory 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 6 |a Théorie des jeux. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Game theory  |2 fast  |0 (OCoLC)fst00937501 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920370840/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP