|
|
|
|
LEADER |
00000cgm a2200000 i 4500 |
001 |
OR_on1177140389 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o c |
007 |
cr cna|||||||| |
007 |
vz czazuu |
008 |
200724s2019 xx 037 o vleng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d OCLCF
|d OCLCO
|d OCLCQ
|
029 |
1 |
|
|a AU@
|b 000071521917
|
035 |
|
|
|a (OCoLC)1177140389
|
037 |
|
|
|a CL0501000125
|b Safari Books Online
|
050 |
|
4 |
|a Q335.5
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Ratner, Alex,
|e on-screen presenter.
|
245 |
1 |
0 |
|a Building and managing training datasets for ML with Snorkel /
|c Alex Ratner.
|
264 |
|
1 |
|a [Place of publication not identified] :
|b O'Reilly Media,
|c 2019.
|
300 |
|
|
|a 1 online resource (1 streaming video file (36 min., 45 sec.))
|
336 |
|
|
|a two-dimensional moving image
|b tdi
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
337 |
|
|
|a video
|b v
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
511 |
0 |
|
|a Presenter, Alex Ratner.
|
500 |
|
|
|a Title from title screen (viewed July 22, 2020).
|
520 |
|
|
|a "Alex Ratner outlines work on Snorkel, an open source framework for building and managing training datasets, and details three key operators for letting users build and manipulate training datasets: labeling functions for labeling unlabeled data, transformation functions for expressing data augmentation strategies, and slicing functions for partitioning and structuring training datasets. These operators allow domain expert users to specify ML models via noisy operators over training data, leading to applications that can be built in hours or days rather than months or years. Alex explores recent work on modeling the noise and imprecision inherent in these operators and using these approaches to train ML models that solve real-world problems, including a recent state-of-the-art result on the SuperGLUE natural language processing benchmark task. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
611 |
2 |
0 |
|a O'Reilly Artificial Intelligence Conference
|d (2019 :
|c San Jose, Calif.)
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Application software
|x Development.
|
650 |
|
0 |
|a Electronic data processing
|x Management.
|
650 |
|
2 |
|a Artificial Intelligence
|
650 |
|
6 |
|a Intelligence artificielle.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Logiciels d'application
|x Développement.
|
650 |
|
7 |
|a artificial intelligence.
|2 aat
|
650 |
|
7 |
|a Application software
|x Development
|2 fast
|0 (OCoLC)fst00811707
|
650 |
|
7 |
|a Artificial intelligence
|2 fast
|0 (OCoLC)fst00817247
|
650 |
|
7 |
|a Electronic data processing
|x Management
|2 fast
|0 (OCoLC)fst00907027
|
650 |
|
7 |
|a Machine learning
|2 fast
|0 (OCoLC)fst01004795
|
856 |
4 |
0 |
|u https://learning.oreilly.com/videos/~/0636920370819/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|