Cargando…

Building and managing training datasets for ML with Snorkel /

"Alex Ratner outlines work on Snorkel, an open source framework for building and managing training datasets, and details three key operators for letting users build and manipulate training datasets: labeling functions for labeling unlabeled data, transformation functions for expressing data aug...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1177140389
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200724s2019 xx 037 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCO  |d OCLCQ 
029 1 |a AU@  |b 000071521917 
035 |a (OCoLC)1177140389 
037 |a CL0501000125  |b Safari Books Online 
050 4 |a Q335.5 
049 |a UAMI 
100 1 |a Ratner, Alex,  |e on-screen presenter. 
245 1 0 |a Building and managing training datasets for ML with Snorkel /  |c Alex Ratner. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (36 min., 45 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Alex Ratner. 
500 |a Title from title screen (viewed July 22, 2020). 
520 |a "Alex Ratner outlines work on Snorkel, an open source framework for building and managing training datasets, and details three key operators for letting users build and manipulate training datasets: labeling functions for labeling unlabeled data, transformation functions for expressing data augmentation strategies, and slicing functions for partitioning and structuring training datasets. These operators allow domain expert users to specify ML models via noisy operators over training data, leading to applications that can be built in hours or days rather than months or years. Alex explores recent work on modeling the noise and imprecision inherent in these operators and using these approaches to train ML models that solve real-world problems, including a recent state-of-the-art result on the SuperGLUE natural language processing benchmark task. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
611 2 0 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c San Jose, Calif.) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 0 |a Application software  |x Development. 
650 0 |a Electronic data processing  |x Management. 
650 2 |a Artificial Intelligence 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 6 |a Logiciels d'application  |x Développement. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Application software  |x Development  |2 fast  |0 (OCoLC)fst00811707 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Electronic data processing  |x Management  |2 fast  |0 (OCoLC)fst00907027 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920370819/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP