Cargando…

Advancing our understanding of deep reinforcement learning with community-driven insights /

"Simulated environments have been essential to advancing the field of artificial intelligence, providing vast amounts of synthetic data that tests novel approaches safely and efficiently. This has most often taken the form of games, ranging from simple board games to modern multiplayer strategy...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1177140060
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200724s2019 xx 042 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCA 
029 1 |a AU@  |b 000071521920 
035 |a (OCoLC)1177140060 
037 |a CL0501000125  |b Safari Books Online 
050 4 |a Q335.5 
049 |a UAMI 
100 1 |a Lange, Danny B.,  |e on-screen presenter. 
245 1 0 |a Advancing our understanding of deep reinforcement learning with community-driven insights /  |c Danny Lange. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (41 min., 2 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Danny Lange. 
500 |a Title from title screen (viewed July 22, 2020). 
520 |a "Simulated environments have been essential to advancing the field of artificial intelligence, providing vast amounts of synthetic data that tests novel approaches safely and efficiently. This has most often taken the form of games, ranging from simple board games to modern multiplayer strategy games. These games served as a good starting point, but Danny Lange (Unity Technologies) reveals an opportunity to push the state of the art in AI research to the next level. United introduced the Obstacle Tower, a high-visual-fidelity, 3-D, third-person, procedurally generated game environment purpose built to test a deep reinforcement learning-trained agent's vision, control, planning, and generalization abilities. Over the past year, Unity invited researchers and developers to try to solve the tower with the intention of sharing those insights with the broader community. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
611 2 0 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c San Jose, Calif.) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 0 |a Reinforcement learning. 
650 0 |a Video games  |x Design. 
650 0 |a Application software  |x Development. 
650 2 |a Artificial Intelligence 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 6 |a Apprentissage par renforcement (Intelligence artificielle) 
650 6 |a Jeux d'ordinateur  |x Conception. 
650 6 |a Logiciels d'application  |x Développement. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Application software  |x Development  |2 fast  |0 (OCoLC)fst00811707 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Computer games  |x Design  |2 fast  |0 (OCoLC)fst00872112 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Reinforcement learning  |2 fast  |0 (OCoLC)fst01732553 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920370789/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP