Cargando…

Generative malware outbreak detection /

"Recently, several deep learning approaches have attempted to detect malware binaries using convolutional neural networks and stacked deep autoencoders. Although they've shown respectable performance on a large corpus of datasets, practical defense systems require precise detection during...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1176539781
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200724s2020 xx 047 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UAB  |d OCLCF  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1176539781 
037 |a CL0501000126  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Park, Sean,  |e on-screen presenter. 
245 1 0 |a Generative malware outbreak detection /  |c Sean Park. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2020. 
300 |a 1 online resource (1 streaming video file (46 min., 50 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from resource description page (viewed July 22, 2020). 
511 0 |a Presenter, Sean Park. 
520 |a "Recently, several deep learning approaches have attempted to detect malware binaries using convolutional neural networks and stacked deep autoencoders. Although they've shown respectable performance on a large corpus of datasets, practical defense systems require precise detection during the malware outbreaks where only a handful of samples are available. Sean Park (Trend Micro) demonstrates the effectiveness of the latent representations obtained through the adversarial autoencoder for malware outbreak detection. Using instruction sequence distribution mapped to a semantic latent vector, the model provides a highly effective neural signature that helps detecting variants of a previously identified malware within a campaign mutated with minor functional upgrade, function shuffling, or slightly modified obfuscations. Sean explains the effectiveness of generative adversarial autoencoders for static malware detection under outbreak situations where a single sample of a kind is available to detect similar in-the-wild samples. The model performance is evaluated over real-world macOS and Windows malware samples against traditional machine learning models."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 0 |a Computer security. 
650 0 |a Malware (Computer software) 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 6 |a Sécurité informatique. 
650 6 |a Logiciels malveillants. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Computer security  |2 fast  |0 (OCoLC)fst00872484 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Malware (Computer software)  |2 fast  |0 (OCoLC)fst01748230 
655 4 |a Electronic videos. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920373452/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP