Cargando…

Building machine learning pipelines : automating model life cycles with TensorFlow /

Companies are spending billions on machine learning projects, but it's money wasted if the models can't be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. Y...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hapke, Hannes Max (Autor), Nelson, Catherine (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, 2020.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_on1175912709
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 200718t20202020caua o ||| 0 eng d
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d YDX  |d YDXIT  |d OCLCO  |d UMI  |d UKAHL  |d OCLCF  |d N$T  |d AU@  |d TEFOD  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1129468108  |a 1165364002  |a 1175674907  |a 1175677064  |a 1175917892  |a 1202816750  |a 1224861426 
020 |a 9781492053163  |q electronic book 
020 |a 1492053163  |q electronic book 
020 |a 1492053147  |q electronic book 
020 |a 9781492053149  |q electronic book 
020 |z 9781492053194 
020 |z 1492053198 
024 8 |a 9781492053187 
029 1 |a AU@  |b 000066260817 
029 1 |a AU@  |b 000071521906 
035 |a (OCoLC)1175912709  |z (OCoLC)1129468108  |z (OCoLC)1165364002  |z (OCoLC)1175674907  |z (OCoLC)1175677064  |z (OCoLC)1175917892  |z (OCoLC)1202816750  |z (OCoLC)1224861426 
037 |a CL0501000122  |b Safari Books Online 
050 4 |a Q325.5  |b .H36 2020 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Hapke, Hannes Max,  |e author. 
245 1 0 |a Building machine learning pipelines :  |b automating model life cycles with TensorFlow /  |c Hannes Hapke and Catherine Nelson. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c 2020. 
264 4 |c ©2020 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
588 |a Description based on online resource; title from digital title page (viewed on July 31, 2020). 
504 |a Includes bibliographical references and index. 
520 |a Companies are spending billions on machine learning projects, but it's money wasted if the models can't be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You'll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. The book also explores new approaches for integrating data privacy into machine learning pipelines. Understand the machine learning management lifecycle Implement data pipelines with Apache Airflow and Kubeflow Pipelines Work with data using TensorFlow tools like ML Metadata, TensorFlow Data Validation, and TensorFlow Transform Analyze models with TensorFlow Model Analysis and ship them with the TFX Model Pusher Component after the ModelValidator TFX Component confirmed that the analysis results are an improvement Deploy models in a variety of environments with TensorFlow Serving, TensorFlow Lite, and TensorFlow.js Learn methods for adding privacy, including differential privacy with TensorFlow Privacy and federated learning with TensorFlow Federated Design model feedback loops to increase your data sets and learn when to update your machine learning models. 
542 |f Copyright © 2020 Hannes Hapke and Catherine Nelson Dated 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a TensorFlow. 
650 0 |a Machine learning. 
650 0 |a Cloud computing. 
650 0 |a Business enterprises  |x Data processing. 
650 6 |a Apprentissage automatique. 
650 6 |a Infonuagique. 
650 6 |a Entreprises  |x Informatique. 
650 7 |a Business enterprises  |x Data processing  |2 fast 
650 7 |a Cloud computing  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Nelson, Catherine,  |e author. 
776 0 8 |i Print version:  |a Hapke, Hannes  |t Building Machine Learning Pipelines  |d Sebastopol : O'Reilly Media, Incorporated,c2020 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492053187/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38038906 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37579869 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6262315 
938 |a YBP Library Services  |b YANK  |n 16847036 
938 |a YBP Library Services  |b YANK  |n 301373727 
938 |a EBSCOhost  |b EBSC  |n 2521652 
994 |a 92  |b IZTAP