Cargando…

Hands-on mathematics for deep learning : build a solid mathematical foundation for training efficient deep neural networks /

The main aim of this book is to make the advanced mathematical background accessible to someone with a programming background. This book will equip the readers with not only deep learning architectures but the mathematics behind them. With this book, you will understand the relevant mathematics that...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dawani, Jay (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000001i 4500
001 OR_on1175108997
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 200316s2020 enk o 000 0 eng d
040 |a UKMGB  |b eng  |e rda  |e pn  |c UKMGB  |d OCLCO  |d EBLCP  |d UKAHL  |d N$T  |d UMI  |d YDX  |d OCLCO  |d OCLCQ 
015 |a GBC050128  |2 bnb 
016 7 |a 019760802  |2 Uk 
019 |a 1158667040  |a 1159163990  |a 1200095164 
020 |a 9781838641849  |q electronic book 
020 |a 183864184X  |q electronic book 
020 |z 9781838647292  |q paperback 
029 0 |a UKMGB  |b 019760802 
029 1 |a AU@  |b 000067299707 
029 1 |a AU@  |b 000067303120 
035 |a (OCoLC)1175108997  |z (OCoLC)1158667040  |z (OCoLC)1159163990  |z (OCoLC)1200095164 
037 |a 9781838641849  |b Packt Publishing 
050 4 |a Q325.5  |b .D39 2020 
082 0 4 |a 006.3101515  |2 23 
049 |a UAMI 
100 1 |a Dawani, Jay,  |e author. 
245 1 0 |a Hands-on mathematics for deep learning :  |b build a solid mathematical foundation for training efficient deep neural networks /  |c Jay Dawani. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Essential Mathematics for Deep Learning -- Linear Algebra -- Comparing scalars and vectors -- Linear equations -- Solving linear equations in n-dimensions -- Solving linear equations using elimination -- Matrix operations -- Adding matrices -- Multiplying matrices -- Inverse matrices -- Matrix transpose -- Permutations -- Vector spaces and subspaces -- Spaces -- Subspaces -- Linear maps -- Image and kernel -- Metric space and normed space -- Inner product space 
505 8 |a Matrix decompositions -- Determinant -- Eigenvalues and eigenvectors -- Trace -- Orthogonal matrices -- Diagonalization and symmetric matrices -- Singular value decomposition -- Cholesky decomposition -- Summary -- Vector Calculus -- Single variable calculus -- Derivatives -- Sum rule -- Power rule -- Trigonometric functions -- First and second derivatives -- Product rule -- Quotient rule -- Chain rule -- Antiderivative -- Integrals -- The fundamental theorem of calculus -- Substitution rule -- Areas between curves -- Integration by parts -- Multivariable calculus -- Partial derivatives 
505 8 |a Chain rule -- Integrals -- Vector calculus -- Derivatives -- Vector fields -- Inverse functions -- Summary -- Probability and Statistics -- Understanding the concepts in probability -- Classical probability -- Sampling with or without replacement -- Multinomial coefficient -- Stirling's formula -- Independence -- Discrete distributions -- Conditional probability -- Random variables -- Variance -- Multiple random variables -- Continuous random variables -- Joint distributions -- More probability distributions -- Normal distribution -- Multivariate normal distribution 
505 8 |a Bivariate normal distribution -- Gamma distribution -- Essential concepts in statistics -- Estimation -- Mean squared error -- Sufficiency -- Likelihood -- Confidence intervals -- Bayesian estimation -- Hypothesis testing -- Simple hypotheses -- Composite hypothesis -- The multivariate normal theory -- Linear models -- Hypothesis testing -- Summary -- Optimization -- Understanding optimization and it's different types -- Constrained optimization -- Unconstrained optimization -- Convex optimization -- Convex sets -- Affine sets -- Convex functions -- Optimization problems 
505 8 |a Non-convex optimization -- Exploring the various optimization methods -- Least squares -- Lagrange multipliers -- Newton's method -- The secant method -- The quasi-Newton method -- Game theory -- Descent methods -- Gradient descent -- Stochastic gradient descent -- Loss functions -- Gradient descent with momentum -- The Nesterov's accelerated gradient -- Adaptive gradient descent -- Simulated annealing -- Natural evolution -- Exploring population methods -- Genetic algorithms -- Particle swarm optimization -- Summary -- Graph Theory -- Understanding the basic concepts and terminology 
520 |a The main aim of this book is to make the advanced mathematical background accessible to someone with a programming background. This book will equip the readers with not only deep learning architectures but the mathematics behind them. With this book, you will understand the relevant mathematics that goes behind building deep learning models. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning  |x Mathematics. 
650 6 |a Apprentissage automatique  |x Mathématiques. 
776 0 8 |i Print version:  |z 9781838647292 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781838647292/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37330856 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6229062 
938 |a EBSCOhost  |b EBSC  |n 2500101 
938 |a YBP Library Services  |b YANK  |n 301337285 
994 |a 92  |b IZTAP