Cargando…

Agile artificial intelligence in Pharo : implementing neural networks, genetic algorithms, and neuroevolution /

Cover classical algorithms commonly used as artificial intelligence techniques and program agile artificial intelligence applications using Pharo. This book takes a practical approach by presenting the implementation details to illustrate the numerous concepts it explains. Along the way, youll learn...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bergel, Alexandre (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [United States] : Apress, [2020]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1162845751
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 200703s2020 xxua o 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d LQU  |d UPM  |d WAU  |d OCLCF  |d LIP  |d UKMGB  |d UKAHL  |d OCLCQ  |d OCLCO  |d UMI  |d OCLCQ  |d OCLCO 
015 |a GBC0B5027  |2 bnb 
016 7 |a 019828499  |2 Uk 
019 |a 1161608162  |a 1162410112  |a 1163843725  |a 1182015587  |a 1183412543  |a 1184033124  |a 1198377301  |a 1203541349 
020 |a 9781484253847  |q (electronic bk.) 
020 |a 1484253841  |q (electronic bk.) 
020 |z 1484253833 
020 |z 9781484253830 
024 7 |a 10.1007/978-1-4842-5384-7.  |2 doi 
024 8 |a 10.1007/978-1-4842-5 
029 1 |a AU@  |b 000067300381 
029 1 |a AU@  |b 000067526465 
029 1 |a UKMGB  |b 019828499 
035 |a (OCoLC)1162845751  |z (OCoLC)1161608162  |z (OCoLC)1162410112  |z (OCoLC)1163843725  |z (OCoLC)1182015587  |z (OCoLC)1183412543  |z (OCoLC)1184033124  |z (OCoLC)1198377301  |z (OCoLC)1203541349 
037 |a com.springer.onix.9781484253847  |b Springer Nature 
050 4 |a Q335 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051010  |2 bisacsh 
072 7 |a UMX  |2 thema 
072 7 |a UMC  |2 thema 
082 0 4 |a 006.3  |2 23 
049 |a UAMI 
100 1 |a Bergel, Alexandre,  |e author. 
245 1 0 |a Agile artificial intelligence in Pharo :  |b implementing neural networks, genetic algorithms, and neuroevolution /  |c Alexandre Bergel. 
264 1 |a [United States] :  |b Apress,  |c [2020] 
300 |a 1 online resource (xxi, 386 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft 
347 |b PDF 
500 |a Includes index. 
520 |a Cover classical algorithms commonly used as artificial intelligence techniques and program agile artificial intelligence applications using Pharo. This book takes a practical approach by presenting the implementation details to illustrate the numerous concepts it explains. Along the way, youll learn neural net fundamentals to set you up for practical examples such as the traveling salesman problem and cover genetic algorithms including a fun zoomorphic creature example. Furthermore, Practical Agile AI with Pharo finishes with a data classification application and two game applications including a Pong-like game and a Flappy Bird-like game. This book is informative and fun, giving you source code to play along with. Youll be able to take this source code and apply it to your own projects. You will: Use neurons, neural networks, learning theory, and more Work with genetic algorithms Incorporate neural network principles when working towards neuroevolution Include neural network fundamentals when building three Pharo-based applications. 
505 0 |a Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Part I: Neural Networks -- Chapter 1: The Perceptron Model -- 1.1 Perceptron as a Kind of Neuron -- 1.2 Implementing the Perceptron -- 1.3 Testing the Code -- 1.4 Formulating Logical Expressions -- 1.5 Handling Errors -- 1.6 Combining Perceptrons -- 1.7 Training a Perceptron -- 1.8 Drawing Graphs -- 1.9 Predicting and 2D Points -- 1.10 Measuring the Precision -- 1.11 Historical Perspective -- 1.12 Exercises -- 1.13 What Have We Seen in This Chapter? 
505 8 |a 1.14 Further Reading About Pharo -- Chapter 2: The Artificial Neuron -- 2.1 Limit of the Perceptron -- 2.2 Activation Function -- 2.3 The Sigmoid Neuron -- 2.4 Implementing the Activation Functions -- 2.5 Extending the Neuron with the Activation Functions -- 2.6 Adapting the Existing Tests -- 2.7 Testing the Sigmoid Neuron -- 2.8 Slower to Learn -- 2.9 What Have We Seen in This Chapter? -- Chapter 3: Neural Networks -- 3.1 General Architecture -- 3.2 Neural Layer -- 3.3 Modeling a Neural Network -- 3.4 Backpropagation -- 3.4.1 Step 1: Forward Feeding -- 3.4.2 Step 2: Error Backward Propagation 
505 8 |a 3.4.3 Step 3: Updating Neuron Parameters -- 3.5 What Have We Seen in This Chapter? -- Chapter 4: Theory on Learning -- 4.1 Loss Function -- 4.2 Gradient Descent -- 4.3 Parameter Update -- 4.4 Gradient Descent in Our Implementation -- 4.5 Stochastic Gradient Descent -- 4.6 The Derivative of the Sigmoid Function -- 4.7 What Have We Seen in This Chapter? -- 4.8 Further Reading -- Chapter 5: Data Classification -- 5.1 Training a Network -- 5.2 Neural Network as a Hashmap -- 5.3 Visualizing the Error and the Topology -- 5.4 Contradictory Data -- 5.5 Classifying Data and One-Hot Encoding 
505 8 |a 5.6 The Iris Dataset -- 5.7 Training a Network with the Iris Dataset -- 5.8 The Effect of the Learning Curve -- 5.9 Testing and Validation -- 5.10 Normalization -- 5.11 Integrating Normalization into the NNetwork Class -- 5.12 What Have We Seen in This Chapter? -- Chapter 6: A Matrix Library -- 6.1 Matrix Operations in C -- 6.2 The Matrix Class -- 6.3 Creating the Unit Test -- 6.4 Accessing and Modifying the Content of a Matrix -- 6.5 Summing Matrices -- 6.6 Printing a Matrix -- 6.7 Expressing Vectors -- 6.8 Factors -- 6.9 Dividing a Matrix by a Factor -- 6.10 Matrix Product 
505 8 |a 6.11 Matrix Subtraction -- 6.12 Filling the Matrix with Random Numbers -- 6.13 Summing the Matrix Values -- 6.14 Transposing a Matrix -- 6.15 Example -- 6.16 What Have We Seen in This Chapter? -- Chapter 7: Matrix-Based Neural Networks -- 7.1 Defining a Matrix-Based Layer -- 7.2 Defining a Matrix-Based Neural Network -- 7.3 Visualizing the Results -- 7.4 Iris Flower Dataset -- 7.5 What Have We Seen in This Chapter? -- Part II: Genetic Algorithms -- Chapter 8: Genetic Algorithms -- 8.1 Algorithms Inspired from Natural Evolution -- 8.2 Example of a Genetic Algorithm -- 8.3 Relevant Vocabulary 
588 0 |a Online resource; title from PDF title page (Ebook Central, viewed October 1, 2020). 
504 |a Includes bibliographical references. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Artificial intelligence. 
650 0 |a Agile software development. 
650 2 |a Artificial Intelligence 
650 6 |a Intelligence artificielle. 
650 6 |a Méthodes agiles (Développement de logiciels) 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Agile software development  |2 fast 
650 7 |a Artificial intelligence  |2 fast 
776 0 8 |i Print version:  |a Bergel, Alexandre.  |t Agile artificial intelligence in Pharo.  |d [Berkeley, CA] : Apress, 2020  |z 1484253833  |w (OCoLC)1113899386 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484253847/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37699264 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6232203 
938 |a YBP Library Services  |b YANK  |n 301346420 
994 |a 92  |b IZTAP