Cargando…

END-TO-END DATA SCIENCE WITH SAS a hands-on programming guide;a hands-on programming guide.

Learn data science concepts with real-world examples in SAS! End-to-End Data Science with SAS: A Hands-On Programming Guide provides clear and practical explanations of the data science environment, machine learning techniques, and the SAS programming knowledge necessary to develop machine learning...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: GEARHEART, JAMES
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : SAS INSTITUTE, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000M 4500
001 OR_on1162841635
003 OCoLC
005 20231017213018.0
006 m d
007 cr |||||||||||
008 200705s2020 xx o ||| 0 eng d
040 |a YDX  |b eng  |c YDX  |d EBLCP  |d N$T  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1162767955  |a 1163474240  |a 1191761718 
020 |a 1642958050  |q (electronic bk.) 
020 |a 9781642958058  |q (electronic bk.) 
020 |a 1642958069  |q (electronic bk.) 
020 |a 9781642958065  |q (electronic bk.) 
029 1 |a AU@  |b 000073554893 
035 |a (OCoLC)1162841635  |z (OCoLC)1162767955  |z (OCoLC)1163474240  |z (OCoLC)1191761718 
050 4 |a QA76.9.D343 
082 0 4 |a 006.3/12  |2 23 
049 |a UAMI 
100 1 |a GEARHEART, JAMES. 
245 1 0 |a END-TO-END DATA SCIENCE WITH SAS  |h [electronic resource] :  |b a hands-on programming guide;a hands-on programming guide. 
260 |a [S.l.] :  |b SAS INSTITUTE,  |c 2020. 
300 |a 1 online resource 
505 0 |a Intro -- Content -- About This Book -- What Does This Book Cover? -- Is This Book for You? -- SAS Software Requirements -- Programming Knowledge Assumed -- Icons Used in This Book -- Example Code and Data -- SAS University Edition -- We Want to Hear from You -- Author Acknowledgments -- About The Author -- Chapter 1: Data Science Overview -- Introduction to This Book -- Minimum Effective Dose -- The Current Data Science Landscape -- Types of Analytics -- Figure 1.1: Eight Levels of Analytics -- Data Science Skills -- Figure 1.2: Data Science Venn Diagram 
505 8 |a Introduction to Data Science Concepts -- Supervised Versus Unsupervised -- Supervised Models -- Table 1.1: Wine Quality Data -- Table 1.2: Wine Data Set Predictive Weights -- Unsupervised Models -- Figure 1.3: Clustering Model Visualization -- Machine Learning Categories -- Figure 1.4: Machine Learning Categories -- Parametric Versus Non-parametric -- Figure 1.5: Data Distribution Types -- Parametric Models -- Non-Parametric Models -- Table 1.3: Parametric versus Non-Parametric Models -- Regression Versus Classification -- Table 1.4: Regression and Classification Models 
505 8 |a Overfitting Versus Underfitting -- Overfitting -- Figure 1.6: Simple Linear Relationship -- Figure 1.7: High Degree Polynomial Model -- Underfitting -- Figure 1.8: Lower Degree Polynomial Model -- Batch Versus Online Learning -- Batch Models -- Online Learning Models -- Bias-Variance Tradeoff -- Bias -- Variance -- Figure 1.9: Optimal Model Complexity -- Training and Testing Data Sets -- Figure 1.10: Bias-Variance Tradeoff -- Step-by-Step Example of Finding Optimal Model Complexity -- Step 1 -- Simple Linear Regression -- Figure 1.11: Simple Linear Regression 
505 8 |a Step 2 -- Linear Regression with Two Variables -- Figure 1.12: Linear Regression with Two Variables -- Step 3 -- Linear Regression with Three Variables -- Figure 1.13: Linear Regression with Three Variables -- Step 4 -- Linear Regression with Four Variables -- Figure 1.14: Linear Regression with Four Variables -- Step 5 -- Linear Regression with Five Variables -- Figure 1.15: Linear Regression with Five Variables -- Step 6 -- Linear Regression with Six Variables -- Figure 1.16: Linear Regression with Six Variables -- Step 7 -- Optimal Linear Regression Model 
505 8 |a Figure 1.17: Optimal Linear Regression Model -- Curse of Dimensionality -- Figure 1.18: Dimension Increase -- Table 1.5: Consistent Density in High-Dimensional Space -- Hughes Phenomenon -- Figure 1.19: Hughes Phenomenon -- Transparent Versus Black Box Models -- Ethics -- No Free Lunch -- Chapter Review -- Chapter 2: Example Step-by-Step Data Science Project -- Overview -- Business Opportunity -- Initial Questions -- What is the business opportunity? -- Do we have the data to support this project? -- What type of work has been done previously on this type of problem? -- Study #1 -- Takeaway 
520 |a Learn data science concepts with real-world examples in SAS! End-to-End Data Science with SAS: A Hands-On Programming Guide provides clear and practical explanations of the data science environment, machine learning techniques, and the SAS programming knowledge necessary to develop machine learning models in any industry. The book covers concepts including understanding the business need, creating a modeling data set, linear regression, parametric classification models, and non-parametric classification models. Real-world business examples and example code are used to demonstrate each process. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a SAS (Computer file) 
630 0 7 |a SAS (Computer file)  |2 fast 
650 0 |a Data mining  |x Statistical methods. 
650 0 |a Machine learning. 
650 0 |a Electronic data processing. 
650 6 |a Apprentissage automatique. 
650 7 |a Data mining  |x Statistical methods  |2 fast 
650 7 |a Electronic data processing  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Gearheart, James  |t End-to-End Data Science with SAS : A Hands-On Programming Guide  |d Cary, NC : SAS Institute,c2020  |z 9781642958041 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781642958065/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 16828642 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6235751 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37494311 
938 |a YBP Library Services  |b YANK  |n 301352948 
938 |a EBSCOhost  |b EBSC  |n 2508628 
994 |a 92  |b IZTAP