Cargando…

Machine Learning Design Patterns /

The design patterns in this book capture best practices and solutions to recurring problems in machine learning. Authors Valliappa Lakshmanan, Sara Robinson, and Michael Munn catalog the first tried-and-proven methods to help engineers tackle problems that frequently crop up during the ML process. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Lakshmanan, Valliappa (Autor), Robinson, Sara (Autor), Munn, Michael (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2021.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1162606043
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 080620s2021 xx o 000 0 eng
040 |a AU@  |b eng  |c AU@  |d OCLCQ  |d LANGC  |d OCLCQ 
020 |z 9781098115784 
024 8 |a 9781098115777 
029 0 |a AU@  |b 000067299363 
035 |a (OCoLC)1162606043 
082 0 4 |a 006.31  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Lakshmanan, Valliappa,  |e author. 
245 1 0 |a Machine Learning Design Patterns /  |c Lakshmanan, Valliappa. 
250 |a 1st edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2021. 
300 |a 1 online resource (400 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
520 |a The design patterns in this book capture best practices and solutions to recurring problems in machine learning. Authors Valliappa Lakshmanan, Sara Robinson, and Michael Munn catalog the first tried-and-proven methods to help engineers tackle problems that frequently crop up during the ML process. These design patterns codify the experience of hundreds of experts into advice you can easily follow. The authors, three Google Cloud engineers, describe 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the most appropriate remedy for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure that models are treating users fairly. 
542 |f Copyright © O'Reilly Media, Inc. 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title page (viewed February 25, 2021) 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
700 1 |a Robinson, Sara,  |e author. 
700 1 |a Munn, Michael,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781098115777/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP