Python feature engineering cookbook : over 70 recipes for creating, engineering, and transforming features to build machine learning models /
"Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn libraries Key Features Discover solutions for feature generation, feature extraction, and feature selection Uncover the end-to-end feature engineering process across...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Birmingham, UK :
Packt Publishing,
2020.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Preface
- Foreseeing Variable Problems When Building ML Models
- Imputing Missing Data
- Encoding Categorical Variables
- Transforming Numerical Variables
- Performing Variable Discretization
- Working with Outliers
- Deriving Features from Dates and Time Variables
- Performing Feature Scaling
- Applying Mathematical Computations to Features
- Creating Features with Transactional and Time Series Data
- Extracting Features from Text Variables