Cargando…

Deep learning with R for beginners : design neural network models in R 3.5 using TensorFlow, Keras, and MXNet /

Explore the world of neural networks by building powerful deep learning models using the R ecosystem Key Features Get to grips with the fundamentals of deep learning and neural networks Use R 3.5 and its libraries and APIs to build deep learning models for computer vision and text processing Impleme...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hodnett, Mark (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2019.
Colección:Learning path.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1159595435
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 200623s2019 enka ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d VLY  |d OCLCF  |d DST  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781838647223 
020 |a 1838647228 
020 |z 9781838642709 
035 |a (OCoLC)1159595435 
037 |a CL0501000119  |b Safari Books Online 
050 4 |a Q325.5 
082 0 4 |a 519.502855133  |2 23 
049 |a UAMI 
100 1 |a Hodnett, Mark,  |e author. 
245 1 0 |a Deep learning with R for beginners :  |b design neural network models in R 3.5 using TensorFlow, Keras, and MXNet /  |c Mark Hodnett [and three others]. 
246 1 |i At head of cover title:  |a Learning path 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2019. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Learning path 
588 0 |a Online resource; title from title page (Safari, viewed June 18, 2020). 
500 |a "Book collection"--Cover 
504 |a Includes bibliographical references. 
520 |a Explore the world of neural networks by building powerful deep learning models using the R ecosystem Key Features Get to grips with the fundamentals of deep learning and neural networks Use R 3.5 and its libraries and APIs to build deep learning models for computer vision and text processing Implement effective deep learning systems in R with the help of end-to-end projects Book Description Deep learning has a range of practical applications in several domains, while R is the preferred language for designing and deploying deep learning models. This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you'll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The Learning Path will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you'll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R. By the end of this Learning Path, you'll be well-versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects. What you will learn Implement credit card fraud detection with autoencoders Train neural networks to perform handwritten digit recognition using MXNet Reconstruct images using variational autoencoders Explore the applications of autoencoder neural networks in clustering and dimensionality reduction Create natural language processing (NLP) models using Keras and TensorFlow in R Prevent models from overfitting the data to improve generalizability Build shallow neural network prediction models Who this book is for This Learning Path is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R.A fundamental understanding of R programming and familiarity with the basic concepts of deep learning are necessary to get the most out of this Learning Path. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a TensorFlow. 
650 0 |a Machine learning. 
650 0 |a R (Computer program language) 
650 0 |a Neural networks (Computer science) 
650 0 |a Application software  |x Development. 
650 2 |a Neural Networks, Computer 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a R (Langage de programmation) 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Logiciels d'application  |x Développement. 
650 7 |a Application software  |x Development  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
830 0 |a Learning path. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781838642709/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP