Cargando…

Ensemble learning for AI developers : learn bagging, stacking, and boosting methods with use cases /

Use ensemble learning techniques and models to improve your machine learning results. Ensemble Learning for AI Developers starts you at the beginning with an historical overview and explains key ensemble techniques and why they are needed. You then will learn how to change training data using baggin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kumar, Alok (Autor), Jain, Mayank (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1159210539
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 200622s2020 caua ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |e rda  |c YDX  |d LQU  |d EBLCP  |d LEATE  |d GW5XE  |d OCLCF  |d N$T  |d UMI  |d NLW  |d SFB  |d UKMGB  |d UKAHL  |d COC  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d GUA  |d OCLCQ 
015 |a GBC0G5590  |2 bnb 
016 7 |a 019828469  |2 Uk 
019 |a 1162214561  |a 1163829257  |a 1164672288  |a 1175707853  |a 1198377321  |a 1200578865  |a 1206409704 
020 |a 9781484259405  |q (electronic bk.) 
020 |a 1484259408  |q (electronic bk.) 
020 |z 1484259394 
020 |z 9781484259399 
024 8 |a 10.1007/978-1-4842-5 
029 1 |a AU@  |b 000067300705 
029 1 |a AU@  |b 000068073280 
029 1 |a UKMGB  |b 019828469 
035 |a (OCoLC)1159210539  |z (OCoLC)1162214561  |z (OCoLC)1163829257  |z (OCoLC)1164672288  |z (OCoLC)1175707853  |z (OCoLC)1198377321  |z (OCoLC)1200578865  |z (OCoLC)1206409704 
037 |a CL0501000147  |b Safari Books Online 
050 4 |a Q335  |b .K863 2020 
082 0 4 |a 006.3 
049 |a UAMI 
100 1 |a Kumar, Alok,  |e author. 
245 1 0 |a Ensemble learning for AI developers :  |b learn bagging, stacking, and boosting methods with use cases /  |c Alok Kumar, Mayank Jain. 
264 1 |a Berkeley, CA :  |b Apress,  |c 2020. 
300 |a 1 online resource (XVI, 136 pages) :  |b 51 illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
505 0 |a Chapter 1: Why Ensemble Techniques Are Needed -- Chapter 2: Mix Training Data -- Chapter 3: Mix Models -- Chapter 4: Mix Combinations -- Chapter 5: Use Ensemble Learning Libraries -- Chapter 6: Tips and Best Practices.- 
520 |a Use ensemble learning techniques and models to improve your machine learning results. Ensemble Learning for AI Developers starts you at the beginning with an historical overview and explains key ensemble techniques and why they are needed. You then will learn how to change training data using bagging, bootstrap aggregating, random forest models, and cross-validation methods. Authors Kumar and Jain provide best practices to guide you in combining models and using tools to boost performance of your machine learning projects. They teach you how to effectively implement ensemble concepts such as stacking and boosting and to utilize popular libraries such as Keras, Scikit Learn, TensorFlow, PyTorch, and Microsoft LightGBM. Tips are presented to apply ensemble learning in different data science problems, including time series data, imaging data, and NLP. Recent advances in ensemble learning are discussed. Sample code is provided in the form of scripts and the IPython notebook. You will: Understand the techniques and methods utilized in ensemble learning Use bagging, stacking, and boosting to improve performance of your machine learning projects by combining models to decrease variance, improve predictions, and reduce bias Enhance your machine learning architecture with ensemble learning. 
500 |a Includes index. 
504 |a Includes bibliographical references and index. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Ensemble learning (Machine learning) 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language) 
650 0 |a Open source software. 
650 0 |a Computer programming. 
650 2 |a Artificial Intelligence 
650 6 |a Intelligence artificielle. 
650 6 |a Python (Langage de programmation) 
650 6 |a Logiciels libres. 
650 6 |a Programmation (Informatique) 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a computer programming.  |2 aat 
650 7 |a Programming & scripting languages: general.  |2 bicssc 
650 7 |a Computer programming  |x software development.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Computers  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Computers  |x Programming  |x Open Source.  |2 bisacsh 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Ensemble learning (Machine learning)  |2 fast  |0 (OCoLC)fst02023707 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Computer programming.  |2 fast  |0 (OCoLC)fst00872390 
650 7 |a Open source software.  |2 fast  |0 (OCoLC)fst01046097 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
700 1 |a Jain, Mayank,  |e author. 
776 0 8 |i Print version:  |z 1484259394  |z 9781484259399  |w (OCoLC)1145595874 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484259405/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37842954 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6231454 
938 |a EBSCOhost  |b EBSC  |n 2504041 
938 |a YBP Library Services  |b YANK  |n 301341900 
994 |a 92  |b IZTAP