Cargando…

The modern data warehouse in Azure : building with speed and agility on Microsoft's cloud platform /

Build a modern data warehouse on Microsoft's Azure Platform that is flexible, adaptable, and fast--fast to snap together, reconfigure, and fast at delivering results to drive good decision making in your business. Gone are the days when data warehousing projects were lumbering dinosaur-style pr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: How, Matt (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress L.P., 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Intro
  • Table of Contents
  • About the Author
  • About the Technical Reviewer
  • Acknowledgments
  • Introduction
  • Chapter 1: The Rise of the Modern Data Warehouse
  • Getting Started
  • Multi-region Support
  • Resource Groups and Tagging
  • Azure Security
  • Tools of the Trade
  • Glossary of Terms
  • Naming Conventions
  • Chapter 2: The SQL Engine
  • The Four Vs
  • Azure Synapse Analytics
  • Understanding Distributions
  • The First Problem
  • ROUND ROBIN Distribution
  • HASH Distribution
  • The Distribution Column
  • How to Check if You Have the Right Column
  • REPLICATED Distribution
  • Resource Management
  • Resource Classes
  • Static Resource Classes
  • Dynamic Resource Classes
  • Pausing and Resuming the Warehouse
  • Workload Management
  • PolyBase
  • Azure SQL Database
  • The Cloud-Based OLTP Engine
  • The Benefits of Azure SQL Database
  • Improved Concurrency
  • Trickle-Fed Data Warehouses
  • Managing Slowly Changing Dimensions
  • Intelligent Query Processing and Tuning
  • Automatic Tuning
  • Adaptive Query Processing
  • Batch Mode Memory Grant Feedback
  • Adaptive Joins
  • Interleaved Execution
  • Hyperscale
  • The Hyperscale Architecture
  • Accelerated Disaster Recovery
  • Azure SQL Deployment Options
  • Azure SQL Database Managed Instances
  • Azure SQL Database Elastic Pools
  • Azure SQL Database V-Core Tiers
  • Azure Synapse Analytics vs. Azure SQL Database
  • The Right Type of Data
  • The Size of the Data
  • The Frequency of the Data
  • The Availability of the Data
  • The Integration of Data
  • Chapter 3: The Integration Engine
  • Introduction to Azure Data Factory
  • The Data Factory Building Blocks
  • Linked Services
  • Integration Runtimes
  • Self-Hosted Integration Runtime
  • Azure SSIS Integration Runtime
  • Triggers
  • Datasets
  • Pipelines and Activities
  • Activity Types
  • External Compute Activities
  • Internal Activities
  • Iteration and Conditional Activities
  • Web Activities
  • Output Constraints
  • Implementing Azure Data Factory
  • Security in Azure Data Factory
  • Using the Managed Service Identity
  • Source Control of Azure Data Factory
  • Templates
  • Solution Structure
  • Getting Started with Azure Data Factory
  • Create Linked Services
  • Creating Datasets
  • Creating Pipelines
  • Debugging Your Pipelines
  • Monitoring Your Pipelines
  • Parameter-Driven Pipelines
  • Getting Started with Parameters
  • Using the Lookup Activity
  • Getting Started with the Lookup Activity
  • Additional Azure Data Factory Elements
  • Additional Invocation Methods
  • Mapping Data Flows
  • Multiple Inputs and Outputs
  • Schema Modifier
  • Row Modifier
  • Execute Mapping Data Flows
  • Azure Data Factory Processing Patterns
  • Linear Pipelines
  • Parent-Child Processing
  • Iterative Parent-Child Processing
  • Dynamic Column Mappings
  • Partitioning Datasets
  • Chapter 4: The Ingestion Architecture
  • Layers of Curation
  • The Raw Layer
  • The Clean Layer
  • The Transformed Layer
  • Understanding Ingestion Architecture
  • Batch Ingestion