Cargando…

Learn data mining through Excel : a step-by-step approach for understanding machine learning methods /

Use popular data mining techniques in Microsoft Excel to better understand machine learning methods. Software tools and programming language packages take data input and deliver data mining results directly, presenting no insight on working mechanics and creating a chasm between input and output. Th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zhou, Hong (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley, CA] : Apress, [2020]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1159166502
003 OCoLC
005 20231017213018.0
006 m o d
007 cr un|---aucuu
008 200620s2020 caua o 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |e rda  |c EBLCP  |d YDX  |d EBLCP  |d GW5XE  |d LQU  |d OCLCF  |d N$T  |d NLW  |d LIP  |d UKAHL  |d UKMGB  |d TSC  |d OCLCO  |d OCLCQ  |d COM  |d VT2  |d OCLCQ  |d FTB  |d OCLCO 
015 |a GBC0H8031  |2 bnb 
016 7 |a 019832894  |2 Uk 
019 |a 1159174539  |a 1159504632  |a 1162005379  |a 1163824686  |a 1164677235  |a 1175701690  |a 1182533402  |a 1183412461  |a 1184033189  |a 1196164043  |a 1197543841  |a 1198131989  |a 1198817645  |a 1203695371  |a 1240381782  |a 1240526759  |a 1240532868 
020 |a 9781484259825  |q electronic book 
020 |a 1484259823  |q electronic book 
020 |z 9781484259818  |q print 
020 |z 1484259815  |q print 
020 |z 9781484259832  |q print 
020 |z 1484259831  |q print 
020 |z 9781484267356  |q print 
020 |z 1484267354  |q print 
024 7 |a 10.1007/978-1-4842-5982-5.  |2 doi 
024 8 |a 10.1007/978-1-4842-5 
029 1 |a AU@  |b 000067301052 
029 1 |a UKMGB  |b 019832894 
029 1 |a AU@  |b 000070459655 
035 |a (OCoLC)1159166502  |z (OCoLC)1159174539  |z (OCoLC)1159504632  |z (OCoLC)1162005379  |z (OCoLC)1163824686  |z (OCoLC)1164677235  |z (OCoLC)1175701690  |z (OCoLC)1182533402  |z (OCoLC)1183412461  |z (OCoLC)1184033189  |z (OCoLC)1196164043  |z (OCoLC)1197543841  |z (OCoLC)1198131989  |z (OCoLC)1198817645  |z (OCoLC)1203695371  |z (OCoLC)1240381782  |z (OCoLC)1240526759  |z (OCoLC)1240532868 
037 |a com.springer.onix.9781484259825  |b Springer Nature 
050 4 |a QA76.9.D343  |b Z46 2020 
072 7 |a UMP.  |2 bicssc 
072 7 |a COM051380.  |2 bisacsh 
072 7 |a UMP.  |2 thema 
082 0 4 |a 006.3/12  |2 23 
049 |a UAMI 
100 1 |a Zhou, Hong,  |e author. 
245 1 0 |a Learn data mining through Excel :  |b a step-by-step approach for understanding machine learning methods /  |c Hong Zhou. 
264 1 |a [Berkeley, CA] :  |b Apress,  |c [2020] 
300 |a 1 online resource (xvi, 219 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
500 |a Includes index. 
505 0 |a Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Excel and Data Mining -- Why Excel? -- Prepare Some Excel Skills -- Formula -- Autofill or Copy -- Absolute Reference -- Paste Special and Paste Values -- IF Function Series -- Review Points -- Chapter 2: Linear Regression -- General Understanding -- Learn Linear Regression Through Excel -- Learn Multiple Linear Regression Through Excel -- Review Points -- Chapter 3: K-Means Clustering -- General Understanding -- Learn K-Means Clustering Through Excel 
505 8 |a Review Points -- Chapter 4: Linear Discriminant Analysis -- General Understanding -- Solver -- Learn LDA Through Excel -- Review Points -- Chapter 5: Cross-Validation and ROC -- General Understanding of Cross-Validation -- Learn Cross-Validation Through Excel -- General Understanding of ROC Analysis -- Learn ROC Analysis Through Excel -- Review Points -- Chapter 6: Logistic Regression -- General Understanding -- Learn Logistic Regression Through Excel -- Review Points -- Chapter 7: K-Nearest Neighbors -- General Understanding -- Learn K-NN Through Excel -- Experiment 1 -- Experiment 2 
505 8 |a Experiment 3 -- Experiment 4 -- Review Points -- Chapter 8: Naïve Bayes Classification -- General Understanding -- Learn Naïve Bayes Through Excel -- Exercise 1 -- Exercise 2 -- Review Points -- Chapter 9: Decision Trees -- General Understanding -- Learn Decision Trees Through Excel -- Learn Decision Trees Through Excel -- A Better Approach -- Apply the Model -- Review Points -- Chapter 10: Association Analysis -- General Understanding -- Learn Association Analysis Through Excel -- Review Points -- Chapter 11: Artificial Neural Network -- General Understanding 
505 8 |a Learn Neural Network Through Excel -- Experiment 1 -- Experiment 2 -- Review Points -- Chapter 12: Text Mining -- General Understanding -- Learn Text Mining Through Excel -- Review Points -- Chapter 13: After Excel -- Index 
520 |a Use popular data mining techniques in Microsoft Excel to better understand machine learning methods. Software tools and programming language packages take data input and deliver data mining results directly, presenting no insight on working mechanics and creating a chasm between input and output. This is where Excel can help. Excel allows you to work with data in a transparent manner. When you open an Excel file, data is visible immediately and you can work with it directly. Intermediate results can be examined while you are conducting your mining task, offering a deeper understanding of how data is manipulated and results are obtained. These are critical aspects of the model construction process that are hidden in software tools and programming language packages. This book teaches you data mining through Excel. You will learn how Excel has an advantage in data mining when the data sets are not too large. It can give you a visual representation of data mining, building confidence in your results. You will go through every step manually, which offers not only an active learning experience, but teaches you how the mining process works and how to find the internal hidden patterns inside the data. What You Will Learn: Comprehend data mining using a visual step-by-step approach Build on a theoretical introduction of a data mining method, followed by an Excel implementation Unveil the mystery behind machine learning algorithms, making a complex topic accessible to everyone Become skilled in creative uses of Excel formulas and functions Obtain hands-on experience with data mining and Excel This book is for anyone who is interested in learning data mining or machine learning, especially data science visual learners and people skilled in Excel, who would like to explore data science topics and/or expand their Excel skills. A basic or beginner level understanding of Excel is recommended. Hong Zhou, PhD is a professor of computer science and mathematics and has been teaching c ourses in computer science, data science, mathematics, and informatics at the University of Saint Joseph for more than 15 years. His research interests include bioinformatics, data mining, software agents, and blockchain. Prior to his current position, he was as a Java developer in Silicon Valley. Dr. Zhou believes that learners can develop a better foundation of data mining models when they visually experience them step-by-step, which is what Excel offers. He has employed Excel in teaching data mining and finds it an effective approach for both data mining learners and educators. 
588 |a Description based on online resource; title from digital title page (viewed on June 26, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Microsoft Excel (Computer file) 
630 0 7 |a Microsoft Excel (Computer file)  |2 fast 
650 0 |a Data mining. 
650 0 |a Machine learning. 
650 2 |a Data Mining 
650 2 |a Machine Learning 
650 6 |a Exploration de données (Informatique) 
650 6 |a Apprentissage automatique. 
650 7 |a Data mining.  |2 bicssc 
650 7 |a Microsoft programming.  |2 bicssc 
650 7 |a Computers  |x Database Management  |x Data Mining.  |2 bisacsh 
650 7 |a Computers  |x Programming  |x Microsoft Programming.  |2 bisacsh 
650 7 |a Data mining  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Zhou, Hong.  |t Learn Data Mining Through Excel : A Step-By-Step Approach for Understanding Machine Learning Methods.  |d Berkeley, CA : Apress L.P., ©2020  |z 9781484259818 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484259825/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37842958 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6227982 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6227938 
938 |a EBSCOhost  |b EBSC  |n 2499430 
938 |a YBP Library Services  |b YANK  |n 301335768 
994 |a 92  |b IZTAP