Cargando…

Deep learning for computer vision with SAS : an introduction /

Discover deep learning and computer vision with SAS! Deep Learning for Computer Vision with SAS®: An Introduction introduces the pivotal components of deep learning. Readers will gain an in-depth understanding of how to build deep feedforward and convolutional neural networks, as well as variants of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Blanchard, Robert (Data scientist) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cary, NC : SAS Institute, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 4500
001 OR_on1159041705
003 OCoLC
005 20231017213018.0
006 m d
007 cr |||||||||||
008 200621s2020 ncu o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d EBLCP  |d N$T  |d UAB  |d OCLCF  |d NJT  |d UMI  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO 
019 |a 1158802866  |a 1159170246  |a 1179125948  |a 1191752940  |a 1199337125 
020 |a 1642959162  |q (electronic bk.) 
020 |a 9781642959161  |q (electronic bk.) 
020 |a 1642959170  |q (electronic bk.) 
020 |a 9781642959178  |q (electronic bk.) 
020 |z 9781642959727 
020 |z 9781642959154 
020 |z 9781642959185 
029 1 |a AU@  |b 000073555894 
035 |a (OCoLC)1159041705  |z (OCoLC)1158802866  |z (OCoLC)1159170246  |z (OCoLC)1179125948  |z (OCoLC)1191752940  |z (OCoLC)1199337125 
037 |a CL0501000152  |b Safari Books Online 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Blanchard, Robert  |c (Data scientist),  |e author. 
245 1 0 |a Deep learning for computer vision with SAS :  |b an introduction /  |c Robert Blanchard. 
264 1 |a Cary, NC :  |b SAS Institute,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Contents -- About This Book -- What Does This Book Cover? -- Is This Book for You? -- What Should You Know about the Examples? -- Software Used to Develop the Book's Content -- Example Code and Data -- We Want to Hear from You -- About The Author -- Introduction to Deep Learning -- Introduction to Neural Networks -- Biological Neurons -- Mathematical Neurons -- Figure 1.1: Multilayer Perceptron -- Deep Learning -- Table 1.1: Traditional Neural Networks versus Deep Learning -- Figure 1.2: Hyperbolic Tangent Function -- Figure 1.3: Rectified Linear Function 
505 8 |a Figure 1.4: Exponential Linear Function -- Batch Gradient Descent -- Figure 1.5: Batch Gradient Descent -- Stochastic Gradient Descent -- Figure 1.6: Stochastic Gradient Descent -- Introduction to ADAM Optimization -- Weight Initialization -- Figure 1.7: Constant Variance (Standard Deviation = 1) -- Figure 1.8: Constant Variance (Standard Deviation =,, -- + ..≈. ) -- Regularization -- Figure 1.9: Regularization Techniques -- Batch Normalization -- Batch Normalization with Mini-Batches -- Traditional Neural Networks versus Deep Learning 
505 8 |a Table 1.2: Comparison of Central Processing Units and Graphical Processing Units -- Deep Learning Actions -- Building a Deep Neural Network -- Table 1.3: Layer Types -- Training a Deep Learning CAS Action Model -- Demonstration 1: Loading and Modeling Data with Traditional Neural Network Methods -- Table 1.4: Develop Data Set Variables -- Figure 1.10: Results of the FREQ Procedure -- Figure 1.11: Results of the NNET Procedure -- Figure 1.12: Score Information -- Demonstration 2: Building and Training Deep Learning Neural Networks Using CASL Code 
505 8 |a Figure 1.13: Transcription of the Model Architecture -- Figure 1.14: Model Shell and Layer Information -- Figure 1.15: Model Information -- Figure 1.15: Optimization History Table -- Figure 1.16: Model Information Details -- Convolutional Neural Networks -- Introduction to Convoluted Neural Networks -- Input Layers -- Figure 2.1: Convolutional Neural Network -- Figure 2.2: Grayscale Image Channel -- Figure 2.3: Color Image Channels -- Convolutional Layers -- Figure 2.4: Single-channel Convolution Without Kernel Flipping -- Using Filters -- Figure 2.5: Starting Position of the Filter 
505 8 |a Figure 2.6: Products of the Entries Between the Filter and Input -- Figure 2.7: Range Movement Due to STRIDE Hyperparameter -- Figure 2.8: Feature Map with Filter Response at Every Spatial Position -- Figure 2.9: Filter Weights and Nonlinear Transformation -- Padding -- Figure 2.10: Feature Map Without Padding -- Figure 2.11: Feature Map with Padding -- Figure 2.12: Without Padding -- Figure 2.13: Automatic Padding with SAS -- Figure 2.14: SAS Automatically Adjusts for Non-Integer Feature Maps -- Feature Map Dimensions -- Figure 2.15: Feature Map Dimensions -- Pooling Layers 
520 |a Discover deep learning and computer vision with SAS! Deep Learning for Computer Vision with SAS®: An Introduction introduces the pivotal components of deep learning. Readers will gain an in-depth understanding of how to build deep feedforward and convolutional neural networks, as well as variants of denoising autoencoders. Transfer learning is covered to help readers learn about this emerging field. Containing a mix of theory and application, this book will also briefly cover methods for customizing deep learning models to solve novel business problems or answer research questions. SAS program. 
504 |a Includes bibliographical references. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a SAS (Computer file) 
630 0 7 |a SAS (Computer file)  |2 fast 
650 0 |a Machine learning. 
650 0 |a Computer vision. 
650 6 |a Apprentissage automatique. 
650 6 |a Vision par ordinateur. 
650 7 |a Computer vision  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Blanchard, Robert  |t Deep Learning for Computer Vision with SAS : An Introduction  |d Cary, NC : SAS Institute,c2020  |z 9781642959154 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781642959178/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38060015 
938 |a YBP Library Services  |b YANK  |n 16814967 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37464840 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6228801 
938 |a YBP Library Services  |b YANK  |n 301337494 
938 |a EBSCOhost  |b EBSC  |n 2500795 
994 |a 92  |b IZTAP