Cargando…

Semiconductor basics : a qualitative, non-mathematical explanation of how semiconductors work and how they are used /

"An accessible guide to how semiconductor electronics work and how they are manufactured, for professionals and interested readers with no electronics engineering background Semiconductor Basics is an accessible guide to how semiconductors work. It is written for readers without an electronic e...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Domingo, George, 1937- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ, USA : Wiley, [2020]
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Introduction ; Chapter 1
  • The Bohr Atom ; Objective of this chapter ; 1.1- Sinusoidal waves ; 1.2- The case of the missing lines ; 1.3- The spectra from gasses and metals ; 1.4- The elements ; 1.5- The hydrogen spectrum ; 1.6- Light is a particle ; 1.7- The atom's structure ; 1.8- The Bohr atom ; 1.9- Summary/Review ; Appendix 1.1
  • Some details of the Bohr model ; Appendix 1.2
  • Semiconductor materials ; Chapter 2
  • Energy Bands ; Objective of this chapter ; 2.1
  • Bringing atoms together ; 2.2
  • The insulator ; 2.3
  • The Conductor ; 2.4
  • The semiconductor ; 2.5
  • Digression
  • A water analogy ; 2.6
  • The mobility of charges ; Summary and conclusions ; Appendix 2.1
  • Energy gap in Semiconductors ; Appendix 2.2
  • Number of electrons and the Fermi function ; Chapter 3
  • Types of Semiconductor ; Objectives of this chapter ; 3.1
  • Semiconductor Materials ; 3.2
  • Short summary of semiconductor materials ; 3.2.1
  • Silicon ; 3.2.2
  • Germanium ; 3.2.3
  • Gallium Arsenide ; 3.3
  • Intrinsic Semiconductors ; 3.4
  • Doped Semiconductors
  • n-type ; 3.5
  • Doped Semiconductors
  • p-type ; 3.6
  • Additional considerations ; Conclusion and summary ; Appendix 3.1
  • The Fermi levels in doped semiconductors ; Appendix 3.2
  • Why all donor electrons go to the conduction band ; Chapter 4
  • Infrared detectors ; Objectives of this chapter ; 4.1
  • What is infrared radiation ; 4.2
  • What our eyes can see ; 4.3
  • infrared Applications ; 4.4- Types of infrared radiation ; 4.5
  • Extrinsic silicon infrared detectors ; 4.6
  • Intrinsic infrared detectors. ; Summary and conclusions ; Appendix 4.1
  • Light Diffraction ; Appendix 4.2
  • Black Body Radiation ; Chapter 5
  • The pn-junction ; Objectives of this chapter ; 5.1
  • The pn-junction ; 5.2
  • The Semiconductor Diode ; 5.3
  • The Schottky Diode ; 5.4
  • The Zener or Tunnel Diode ; Conclusions and Summary ; Appendix 5.1
  • Fermi levels of a pn junction ; Appendix 5.2
  • Diffusion and drift currents ; Appendix 5.3
  • The thickness of the transition region ; Appendix 5.4
  • Work Function and the Shockley diode ; Chapter 6
  • Other Electrical Components ; Objective of this chapter ; 6.1
  • Voltage and Current ; 6.2
  • The Resistance ; 6.3
  • The Capacitor ; 6.4
  • The Inductor ; 6.5
  • Sinusoidal Voltages ; 6.6
  • Inductor application ; Conclusions and summary ; Appendix 6.1
  • Impedance and phase changes ; Chapter 7
  • Diode Applications ; 7.1
  • Solar Cells ; 7.2
  • Rectifiers ; 7.3
  • Current Protection ; 7.4
  • Clamping Circuit ; 7.5
  • Voltage Clipper ; 7.6
  • Half-Wave Voltage Doubler ; 7.7
  • Solar Cells Bypass diodes ; 7.8
  • Applications of Shockley Diodes ; 7.9
  • Application of Zener Diodes ; Conclusion and summary ; Appendix 7.1
  • Details on the voltage doubler ; Chapter 8
  • The Transistors ; OBCETIVE OF THIS CHAPTER ; 8.1
  • The concept of the transistor ; 8.2
  • The Bipolar Junction Transistor, BJT ; 8.3
  • The Junction Field Effect Transistor, JFET ; 8.4
  • The MOSFET ; Conclusions and summary ; Chapter 9
  • Transistor Biasing Circuits ; Objective of this chapter ; 9.1
  • Introduction ; 9.2
  • Emitter Feedback Bias ; 9.3
  • A simple transistor amplifier ; 9.4
  • A fixed bias circuit ; 9.5
  • The Collector bias circuit ; 9.6
  • Power considerations ; 9.7
  • Multi-stage transistor amplifiers ; 9.8
  • Operational amplifier, OpAmp ; 9.9
  • The ideal OpAmp ; Summary and Conclusions ; Appendix 9.1
  • Derivation of the stability of Collector feedback ; Chapter 10
  • Integrated circuit (IC) fabrication ; Objective of this chapter ; 10.1
  • The basic material ; 10.2
  • The Boule ; 10.2.1
  • The Czochralski method ; 10.2.2
  • The Flow-Zone method ; 10.3
  • The wafers and epitaxial growth ; 10.4
  • Photolithography ; 10.5
  • The fabrication of a pnp transistor on a silicon waver ; 10.6
  • A digression on doping ; 10.6.1
  • Thermal diffusion ; 10.6.2
  • Implantation ; 10.7
  • Resume our transistor processing ; 10.7.1
  • The contacts ; 10.7.2
  • Metallization ; 10.7.3
  • Multiple interconnects ; 10.8
  • Fabrication of other components ; 10.8.1 The integrated resistor ; 10.8.2 The integrated capacitor ; 10.8.3 Integrated inductor ; 10.9
  • Testing and Packaging ; 10.10
  • Clean rooms ; 10.11
  • Additional thoughts about processing ; Appendix 10.1
  • Miller indices in the diamond structure ; Chapter 11
  • Logic circuits ; Objectives of this chapter ; 11.1
  • Boolean algebra ; 11.2
  • The logic symbols ; 11.3
  • The electronic inside the symbols ; 11.3.1
  • Diode implementation ; 11.3.2
  • CMOS implementation ; 11.4- The inverter of NOT circuit ; 11.5
  • The NOR circuit ; 11.6
  • The NAND circuit ; 11.7
  • The XNOR or the exclusive NOR ; 11.8
  • The half adder ; 11.9
  • The full adder ; 11.10
  • Adding more than two digital numbers ; 11.11
  • The subtractor ; 11.12
  • Digression; flip-flops, latches and shifters ; 11.13
  • Multiplication and division of binary numbers ; 11.14
  • Additional comments, speed and power ; Conclusion and summary ; Appendix 11.1
  • Algebraic formulation of logic modules ; Appendix 11.2
  • Detailed analysis of the full adder ; Appendix 11.3
  • Complementary numbers ; Appendix 11.4
  • Dividing digital numbers ; Chapter 12
  • VLSI components ; Objectives of this chapter ; 12.1
  • Multiplexers, MUX ; 12.2
  • De-multiplexer, DEMUX ; 12.3
  • Registers ; 12.4
  • Timing and Waveforms ; 12.5
  • Memories ; 12.5.1
  • The Static Random-Access Memory, SRAM ; 12.5.2
  • The Dynamic Random-Access memory, DRAM ; 12.5.3
  • Read Only Memory, ROM ; 12.5.4
  • Programable Read only Memory, PROM ; 12.6
  • Gate arrays ; Conclusions and summary ; Appendix 12.1
  • A NAND implementation of a 2 to 1 MUX ; Chapter 13
  • Opto-Electronics ; Objective of this chapter ; 13.1
  • Photoconductors ; 13.2- PIN diodes ; 13.3
  • Lasers ; 13.3.1
  • The laser action ; 13.3.2
  • Solid State lasers ; 13.3.3
  • Semiconductor Lasers ; 13.3.4
  • Laser applications ; 13.4
  • Light Emitting Diodes, LEDs ; Summary and Conclusions ; Appendix 13.1
  • The detector readout ; Chapter 14
  • Microprocessors and computers ; 14.1
  • The computer ; 14.1.1
  • The computer architecture ; 14.1.2
  • The Memories ; 14.1.3
  • Input and output units ; 14.1.4
  • The central processing unit, CPU ; 14.2
  • Microcontrollers ; 14.3
  • Liquid Crystal Displays, LCDs ; 14.3.1
  • Liquid Crystal materials ; 14.3.2
  • The contacts ; 14.3.3
  • The color Filters ; 14.