Cargando…

Machine Learning and Data Science Blueprints for Finance /

Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Tatsat, Hariom (Autor), Puri, Sahil (Autor), Lookabaugh, Brad (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2020.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1156479297
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 140520s2020 xx o 000 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d YDX  |d EBLCP  |d OCLCQ  |d TOH  |d OCLCQ 
019 |a 1199055778  |a 1199801373  |a 1199816366 
020 |a 1492073008  |q (electronic bk.) 
020 |a 9781492073000  |q (electronic bk.) 
020 |z 9781492073055 
024 8 |a 9781492073048 
029 0 |a AU@  |b 000067212143 
029 1 |a AU@  |b 000070668376 
035 |a (OCoLC)1156479297  |z (OCoLC)1199055778  |z (OCoLC)1199801373  |z (OCoLC)1199816366 
082 0 4 |a 006.31  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Tatsat, Hariom,  |e author. 
245 1 0 |a Machine Learning and Data Science Blueprints for Finance /  |c Tatsat, Hariom. 
250 |a 1st edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2020. 
300 |a 1 online resource (400 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
520 |a Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and robo-advisor and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations. 
542 |f Copyright © O'Reilly Media, Inc. 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title page (viewed November 25, 2020) 
505 0 |a Intro -- Copyright -- Table of Contents -- Preface -- Who This Book Is For -- How This Book Is Organized -- Part I: The Framework -- Part II: Supervised Learning -- Part III: Unsupervised Learning -- Part IV: Reinforcement Learning and Natural Language Processing -- Conventions Used in This Book -- Using Code Presented in the Book -- Python Libraries -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Special Thanks from Hariom -- Special Thanks from Sahil -- Special Thanks from Brad -- Part I. The Framework -- Chapter 1. Machine Learning in Finance: The Landscape 
505 8 |a Current and Future Machine Learning Applications in Finance -- Algorithmic Trading -- Portfolio Management and Robo-Advisors -- Fraud Detection -- Loans/Credit Card/Insurance Underwriting -- Automation and Chatbots -- Risk Management -- Asset Price Prediction -- Derivative Pricing -- Sentiment Analysis -- Trade Settlement -- Money Laundering -- Machine Learning, Deep Learning, Artificial Intelligence, and Data Science -- Machine Learning Types -- Supervised -- Unsupervised -- Reinforcement Learning -- Natural Language Processing -- Chapter Summary -- Next Steps 
505 8 |a Chapter 2. Developing a Machine Learning Model in Python -- Why Python? -- Python Packages for Machine Learning -- Python and Package Installation -- Steps for Model Development in Python Ecosystem -- Model Development Blueprint -- Chapter Summary -- Next Steps -- Chapter 3. Artificial Neural Networks -- ANNs: Architecture, Training, and Hyperparameters -- Architecture -- Training -- Hyperparameters -- Creating an Artificial Neural Network Model in Python -- Installing Keras and Machine Learning Packages -- Running an ANN Model Faster: GPU and Cloud Services -- Chapter Summary -- Next Steps 
505 8 |a Part II. Supervised Learning -- Chapter 4. Supervised Learning: Models and Concepts -- Supervised Learning Models: An Overview -- Linear Regression (Ordinary Least Squares) -- Regularized Regression -- Logistic Regression -- Support Vector Machine -- K-Nearest Neighbors -- Linear Discriminant Analysis -- Classification and Regression Trees -- Ensemble Models -- ANN-Based Models -- Model Performance -- Overfitting and Underfitting -- Cross Validation -- Evaluation Metrics -- Model Selection -- Factors for Model Selection -- Model Trade-off -- Chapter Summary 
505 8 |a Chapter 5. Supervised Learning: Regression (Including Time Series Models) -- Time Series Models -- Time Series Breakdown -- Autocorrelation and Stationarity -- Traditional Time Series Models (Including the ARIMA Model) -- Deep Learning Approach to Time Series Modeling -- Modifying Time Series Data for Supervised Learning Models -- Case Study 1: Stock Price Prediction -- Blueprint for Using Supervised Learning Models to Predict a Stock Price -- Case Study 2: Derivative Pricing -- Blueprint for Developing a Machine Learning Model for Derivative Pricing 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
700 1 |a Puri, Sahil,  |e author. 
700 1 |a Lookabaugh, Brad,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492073048/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6362989 
938 |a YBP Library Services  |b YANK  |n 17000239 
994 |a 92  |b IZTAP