Cargando…

Hands-On Exploratory Data Analysis with Python /

Discover techniques to summarize the characteristics of your data using PyPlot, NumPy, SciPy, and pandas Key Features Understand the fundamental concepts of exploratory data analysis using Python Find missing values in your data and identify the correlation between different variables Practice graph...

Descripción completa

Detalles Bibliográficos
Autor principal: Mukhiya, Suresh Kumar
Otros Autores: Ahmed, Usman
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] Packt Publishing, 2020.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007 4500
001 OR_on1156355284
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 200511s2020 xx o 000 0 eng d
040 |a VT2  |b eng  |c VT2  |d TOH  |d OCLCQ 
020 |a 9781789537253 
020 |a 1789537258 
035 |a (OCoLC)1156355284 
082 0 4 |a 001.420285  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Mukhiya, Suresh Kumar. 
245 1 0 |a Hands-On Exploratory Data Analysis with Python /  |c Mukhiya, Suresh Kumar. 
260 |a [Place of publication not identified]  |b Packt Publishing,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from content provider. 
520 |a Discover techniques to summarize the characteristics of your data using PyPlot, NumPy, SciPy, and pandas Key Features Understand the fundamental concepts of exploratory data analysis using Python Find missing values in your data and identify the correlation between different variables Practice graphical exploratory analysis techniques using Matplotlib and the Seaborn Python package Book Description Exploratory Data Analysis (EDA) is an approach to data analysis that involves the application of diverse techniques to gain insights into a dataset. This book will help you gain practical knowledge of the main pillars of EDA - data cleaning, data preparation, data exploration, and data visualization. You'll start by performing EDA using open source datasets and perform simple to advanced analyses to turn data into meaningful insights. You'll then learn various descriptive statistical techniques to describe the basic characteristics of data and progress to performing EDA on time-series data. As you advance, you'll learn how to implement EDA techniques for model development and evaluation and build predictive models to visualize results. Using Python for data analysis, you'll work with real-world datasets, understand data, summarize its characteristics, and visualize it for business intelligence. By the end of this EDA book, you'll have developed the skills required to carry out a preliminary investigation on any dataset, yield insights into data, present your results with visual aids, and build a model that correctly predicts future outcomes. What you will learn Import, clean, and explore data to perform preliminary analysis using powerful Python packages Identify and transform erroneous data using different data wrangling techniques Explore the use of multiple regression to describe non-linear relationships Discover hypothesis testing and explore techniques of time-series analysis Understand and interpret results obtained from graphical analysis Build, train, and optimize predictive models to estimate results Perform complex EDA techniques on open source datasets Who this book is for This EDA book is for anyone interested in data analysis, especially students, statisticians, data analysts, and data scientists. The practical concepts presented in this book can be applied in various disciplines to enhance decision-making processes with data analysis and synthesis. Fundamental knowledge of Python programming and statistical concepts is all you need to ... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
700 1 |a Ahmed, Usman. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781789537253/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP