Cargando…

Hands-on neuroevolution with Python : build high-performing artificial neural network architectures using neuroevolution-based algorithms /

This book will help you to apply popular neuroevolution strategies to existing neural network designs to improve their performance. It covers practical examples in areas such as games, robotics, and simulation of natural processes, using real-world examples and data sets for your better understandin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Omelianenko, Iaroslav (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1155889847
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 200529s2019 enka ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d NLW  |d YDX  |d EBLCP  |d TEFOD  |d UKAHL  |d UKMGB  |d N$T  |d OCLCO  |d OCLCQ  |d NZAUC  |d OCLCQ  |d OCLCO 
015 |a GBC066764  |2 bnb 
016 7 |a 019669280  |2 Uk 
019 |a 1134406325  |a 1134854915 
020 |a 9781838822002 
020 |a 1838822003 
020 |z 9781838824914 
029 1 |a AU@  |b 000066491163 
029 1 |a CHSLU  |b 001394829 
029 1 |a CHVBK  |b 588437166 
029 1 |a UKMGB  |b 019669280 
029 1 |a AU@  |b 000071850053 
035 |a (OCoLC)1155889847  |z (OCoLC)1134406325  |z (OCoLC)1134854915 
037 |a CL0501000113  |b Safari Books Online 
050 4 |a QA76.87 
082 0 4 |a 006.3/2  |2 23 
049 |a UAMI 
100 1 |a Omelianenko, Iaroslav,  |e author. 
245 1 0 |a Hands-on neuroevolution with Python :  |b build high-performing artificial neural network architectures using neuroevolution-based algorithms /  |c Iaroslav Omelianenko. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2019. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed May 29, 2020). 
504 |a Includes bibliographical references. 
505 0 |a Cover -- Title Page -- Copyright and Credits -- Dedication -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Fundamentals of Evolutionary Computation Algorithms and Neuroevolution Methods -- Chapter 1: Overview of Neuroevolution Methods -- Evolutionary algorithms and neuroevolution-based methods -- Genetic operators -- Mutation operator -- Crossover operator -- Genome encoding schemes -- Direct genome encoding -- Indirect genome encoding -- Coevolution -- Modularity and hierarchy -- NEAT algorithm overview -- NEAT encoding scheme -- Structural mutations 
505 8 |a Crossover with an innovation number -- Speciation -- Hypercube-based NEAT -- Compositional Pattern Producing Networks -- Substrate configuration -- Evolving connective CPPNs and the HyperNEAT algorithm -- Evolvable-Substrate HyperNEAT -- Information patterns in the hypercube -- Quadtree as an effective information extractor -- ES-HyperNEAT algorithm -- Novelty Search optimization method -- Novelty Search and natural evolution -- Novelty metric -- Summary -- Further reading -- Chapter 2: Python Libraries and Environment Setup -- Suitable Python libraries for neuroevolution experiments 
505 8 |a NEAT-Python -- NEAT-Python usage example -- PyTorch NEAT -- PyTorch NEAT usage example -- MultiNEAT -- MultiNEAT usage example -- Deep Neuroevolution -- Comparing Python neuroevolution libraries -- Environment setup -- Pipenv -- Virtualenv -- Anaconda -- Summary -- Section 2: Applying Neuroevolution Methods to Solve Classic Computer Science Problems -- Chapter 3: Using NEAT for XOR Solver Optimization -- Technical requirements -- XOR problem basics -- The objective function for the XOR experiment -- Hyperparameter selection -- NEAT section -- DefaultStagnation section 
505 8 |a DefaultReproduction section -- DefaultSpeciesSet section -- DefaultGenome section -- XOR experiment hyperparameters -- Running the XOR experiment -- Environment setup -- XOR experiment source code -- Running the experiment and analyzing the results -- Exercises -- Summary -- Chapter 4: Pole-Balancing Experiments -- Technical requirements -- The single-pole balancing problem -- The equations of motion of the single-pole balancer -- State equations and control actions -- The interactions between the solver and the simulator -- Objective function for a single-pole balancing experiment 
505 8 |a Cart-pole apparatus simulation -- The simulation cycle -- Genome fitness evaluation -- The single-pole balancing experiment -- Hyperparameter selection -- Working environment setup -- The experiment runner implementation -- Function to evaluate the fitness of all genomes in the population -- The experiment runner function -- Running the single-pole balancing experiment -- Exercises -- The double-pole balancing problem -- The system state and equations of motion -- Reinforcement signal -- Initial conditions and state update -- Control actions -- Interactions between the solver and the simulator 
520 |a This book will help you to apply popular neuroevolution strategies to existing neural network designs to improve their performance. It covers practical examples in areas such as games, robotics, and simulation of natural processes, using real-world examples and data sets for your better understanding. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Neural networks (Computer science) 
650 0 |a Python (Computer program language) 
650 0 |a Artificial intelligence. 
650 2 |a Neural Networks, Computer 
650 2 |a Artificial Intelligence 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Python (Langage de programmation) 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Omelianenko, Iaroslav.  |t Hands-On Neuroevolution with Python : Build High-Performing Artificial Neural Network Architectures Using Neuroevolution-based Algorithms.  |d Birmingham : Packt Publishing, Limited, ©2019  |z 9781838824914 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781838824914/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37098046 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6001933 
938 |a EBSCOhost  |b EBSC  |n 2335847 
938 |a YBP Library Services  |b YANK  |n 301028753 
994 |a 92  |b IZTAP